Bauer Fabian, Kächele Jessica, Bernhard Juliane, Hajiyianni Marina, Weinhold Niels, Sauer Sandra, Grözinger Martin, Raab Marc-Steffen, Mai Elias K, Weber Tim F, Goldschmidt Hartmut, Schlemmer Heinz-Peter, Maier-Hein Klaus, Delorme Stefan, Neher Peter, Wennmann Markus
Division of Radiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany (F.B., M.G., H.P.S., S.D.); Division of Musculoskeletal Imaging and Intervention, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114 (F.B.).
Division of Medical Image Computing, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany (J.K., J.B., K.M.H., P.N.); German Cancer Consortium (DKTK), Partner Site Heidelberg, 69120 Heidelberg, Germany (J.K., K.M.H., P.N.).
Acad Radiol. 2025 May;32(5):2824-2835. doi: 10.1016/j.acra.2024.12.060. Epub 2025 Jan 22.
To establish an advanced automated bone marrow (BM) segmentation model on whole-body (WB-)MRI in monoclonal plasma cell disorders (MPCD), and to demonstrate its robust performance on multicenter datasets with severe myeloma-related pathologies.
The study cohort comprised multi-vendor, multi-protocol imaging data acquired with varying field strength across 8 different centers. In total, 210 WB-MRIs of 207 MPCD patients were included. An nnU-Net algorithm was established for segmenting the individual bone marrow spaces (BMS) of the spine, pelvis, humeri and femora (advanced segmentation model). For this task, 186 T1-weighted (T1w) WB-MRIs from center 1 were used in the training set. Test sets included 12 T1w WB-MRIs from center 2 (I) and 9 T1w WB-MRIs from centers 3-8 (II). Example cases were included to showcase segmentation performance on T1w WB-MRIs with extensive tumor load. The segmentation accuracy of the advanced segmentation model was compared to a prior established basic segmentation model by calculating Dice scores and using the Wilcoxon signed-rank test.
The mean Dice score on the individual BMS was 0.89±0.13 (test set I) and 0.88±0.11 (test set II), significantly higher than the Dice scores of a prior basic model (p<0.05). Dice scores for the BMS of the individual bones ranged from 0.77 to 0.96 (test set I), and 0.81 to 0.95 (test set II). BM altered by myeloma-relevant pathologies, artifacts or low imaging quality was precisely segmented.
The advanced model performed reliable, automated segmentations, even on heterogeneously acquired multicenter WB-MRIs with severe pathologies.
建立一种用于单克隆浆细胞疾病(MPCD)全身(WB-)MRI的先进自动骨髓(BM)分割模型,并证明其在具有严重骨髓瘤相关病变的多中心数据集中的强大性能。
研究队列包括在8个不同中心使用不同场强采集的多厂商、多协议成像数据。总共纳入了207例MPCD患者的210份WB-MRI。建立了一种nnU-Net算法来分割脊柱、骨盆、肱骨和股骨的各个骨髓腔(BMS)(先进分割模型)。对于此任务,训练集使用了来自中心1的186份T1加权(T1w)WB-MRI。测试集包括来自中心2的12份T1w WB-MRI(I)和来自中心3-8的9份T1w WB-MRI(II)。纳入了示例病例以展示在具有广泛肿瘤负荷的T1w WB-MRI上的分割性能。通过计算Dice分数并使用Wilcoxon符号秩检验,将先进分割模型的分割准确性与先前建立的基本分割模型进行比较。
在各个BMS上的平均Dice分数在测试集I中为0.89±0.13,在测试集II中为0.88±0.11,显著高于先前基本模型的Dice分数(p<0.05)。各个骨骼BMS的Dice分数在测试集I中介于0.77至0.96之间,在测试集II中介于0.81至0.95之间。由骨髓瘤相关病变、伪影或低成像质量改变的骨髓被精确分割。
即使在具有严重病变的多中心异质性采集的WB-MRI上,先进模型也能进行可靠的自动分割。