Suppr超能文献

SPINEPS——使用两阶段方法进行多类别语义和实例分割的T2加权磁共振图像全脊柱自动分割

SPINEPS-automatic whole spine segmentation of T2-weighted MR images using a two-phase approach to multi-class semantic and instance segmentation.

作者信息

Möller Hendrik, Graf Robert, Schmitt Joachim, Keinert Benjamin, Schön Hanna, Atad Matan, Sekuboyina Anjany, Streckenbach Felix, Kofler Florian, Kroencke Thomas, Bette Stefanie, Willich Stefan N, Keil Thomas, Niendorf Thoralf, Pischon Tobias, Endemann Beate, Menze Bjoern, Rueckert Daniel, Kirschke Jan S

机构信息

Department of Diagnostic and Interventional Neuroradiology, School of Medicine and Health, Technical University of Munich, Munich, Germany.

Institut Für KI Und Informatik in Der Medizin, Klinikum Rechts Der Isar, Technical University of Munich, Munich, Germany.

出版信息

Eur Radiol. 2025 Mar;35(3):1178-1189. doi: 10.1007/s00330-024-11155-y. Epub 2024 Oct 29.

Abstract

OBJECTIVES

Introducing SPINEPS, a deep learning method for semantic and instance segmentation of 14 spinal structures (ten vertebra substructures, intervertebral discs, spinal cord, spinal canal, and sacrum) in whole-body sagittal T2-weighted turbo spin echo images.

MATERIAL AND METHODS

This local ethics committee-approved study utilized a public dataset (train/test 179/39 subjects, 137 female), a German National Cohort (NAKO) subset (train/test 1412/65 subjects, mean age 53, 694 female), and an in-house dataset (test 10 subjects, mean age 70, 5 female). SPINEPS is a semantic segmentation model, followed by a sliding window approach utilizing a second model to create instance masks from the semantic ones. Segmentation evaluation metrics included the Dice score and average symmetrical surface distance (ASSD). Statistical significance was assessed using the Wilcoxon signed-rank test.

RESULTS

On the public dataset, SPINEPS outperformed a nnUNet baseline on every structure and metric (e.g., an average over vertebra instances: dice 0.933 vs 0.911, p < 0.001, ASSD 0.21 vs 0.435, p < 0.001). SPINEPS trained on automated annotations of the NAKO achieves an average global Dice score of 0.918 on the combined NAKO and in-house test split. Adding the training data from the public dataset outperforms this (average instance-wise Dice score over the vertebra substructures 0.803 vs 0.778, average global Dice score 0.931 vs 0.918).

CONCLUSION

SPINEPS offers segmentation of 14 spinal structures in T2w sagittal images. It provides a semantic mask and an instance mask separating the vertebrae and intervertebral discs. This is the first publicly available algorithm to enable this segmentation.

KEY POINTS

Question No publicly available automatic approach can yield semantic and instance segmentation masks for the whole spine (including posterior elements) in T2-weighted sagittal TSE images. Findings Segmenting semantically first and then instance-wise outperforms a baseline trained directly on instance segmentation. The developed model produces high-resolution MRI segmentations for the whole spine. Clinical relevance This study introduces an automatic approach to whole spine segmentation, including posterior elements, in arbitrary fields of view T2w sagittal MR images, enabling easy biomarker extraction, automatic localization of pathologies and degenerative diseases, and quantifying analyses as downstream research.

摘要

目的

介绍SPINEPS,一种用于在全身矢状位T2加权快速自旋回波图像中对14种脊柱结构(十个椎体子结构、椎间盘、脊髓、椎管和骶骨)进行语义和实例分割的深度学习方法。

材料与方法

本研究经当地伦理委员会批准,使用了一个公共数据集(训练/测试179/39名受试者,137名女性)、德国国家队列(NAKO)子集(训练/测试1412/65名受试者,平均年龄53岁,694名女性)以及一个内部数据集(测试10名受试者,平均年龄70岁,5名女性)。SPINEPS是一个语义分割模型,随后采用滑动窗口方法,利用第二个模型从语义掩码创建实例掩码。分割评估指标包括Dice分数和平均对称表面距离(ASSD)。使用Wilcoxon符号秩检验评估统计学显著性。

结果

在公共数据集上,SPINEPS在每个结构和指标上均优于nnUNet基线(例如,椎体实例的平均值:Dice 0.933对0.911,p < 0.001,ASSD 0.21对0.435,p < 0.001)。在NAKO的自动标注上训练的SPINEPS在NAKO和内部测试分割的组合上实现了平均全局Dice分数为0.918。添加来自公共数据集的训练数据表现更优(椎体子结构的平均实例级Dice分数0.803对0.778,平均全局Dice分数0.931对0.918)。

结论

SPINEPS可对T2加权矢状位图像中的14种脊柱结构进行分割。它提供了一个语义掩码和一个将椎体和椎间盘分开的实例掩码。这是第一个可公开获得的实现这种分割的算法。

关键点

问题:尚无公开可用的自动方法能在T2加权矢状位TSE图像中为整个脊柱(包括后部结构)生成语义和实例分割掩码。发现:先进行语义分割然后再进行实例分割优于直接在实例分割上训练的基线。所开发的模型可为整个脊柱生成高分辨率MRI分割。临床意义:本研究介绍了一种在任意视野的T2加权矢状位MR图像中对整个脊柱(包括后部结构)进行分割的自动方法,便于提取生物标志物、自动定位病变和退行性疾病以及进行下游研究的定量分析。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/799f/11836161/b32820850327/330_2024_11155_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验