Berdiyorov G R
Qatar Environment & Energy Research institute (QEERI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, P.O. Box 34110, Doha, Qatar.
Sci Rep. 2025 Jan 24;15(1):3018. doi: 10.1038/s41598-024-81220-5.
Keto-enol tautomerism in organic molecules presents a potential for modulating the charge transport at the nanoscale. The reduction of the isomerization barrier and favoring the highly conductive enol form are the main challenges towards practical implementation of this phenomenon. Using density functional theory calculations, we have demonstrated that pyridinic nitrogen in biphenyl molecules with keto-enol tautomerism can successfully make the conductive enol form energetically more favorable. This enhanced stability originates from the hydrogen bonding between the pyridinic nitrogen and the hydroxyl group in the enol state. The presence of the pyridinic unit further enhances the conductance of the enol form while reducing that of the keto form compared to the pristine molecule. The novelty of our findings lies in the use of pyridinic nitrogen to control isomerization through hydrogen bonding, offering a new approach to tuning electronic properties for molecular devices. These findings can be valuable in the development of functional molecular devices based on the keto-enol isomerization phenomenon.
有机分子中的酮-烯醇互变异构在纳米尺度上具有调节电荷传输的潜力。降低异构化势垒并促进高导电性的烯醇形式是实现这一现象实际应用的主要挑战。通过密度泛函理论计算,我们证明了具有酮-烯醇互变异构的联苯分子中的吡啶氮能够成功地使导电的烯醇形式在能量上更有利。这种增强的稳定性源于烯醇态下吡啶氮与羟基之间的氢键。与原始分子相比,吡啶单元的存在进一步提高了烯醇形式的电导率,同时降低了酮形式的电导率。我们研究结果的新颖之处在于利用吡啶氮通过氢键控制异构化,为调节分子器件的电子性质提供了一种新方法。这些发现对于基于酮-烯醇异构化现象的功能分子器件的开发可能具有重要价值。