Berdiyorov G R, Hamoudi H
Qatar Environment and Energy Research Institute, Hamad Bin Khalifa University, Doha P.O. Box 34110, Qatar.
J Chem Phys. 2022 May 7;156(17):174701. doi: 10.1063/5.0076759.
Selenium and tellurium have recently been proposed as alternatives to sulfur anchoring groups for self-assembly of organic molecules on noble-metal substrates. Here, we conduct quantum transport calculations for a single biphenyl molecule anchored on Au (111) electrodes with thiolate, selenolate, and telluride terminal groups taking into account both dispersive interactions and spin-orbit coupling. The numerical results show that the current through the junction decreases by increasing the atomic number of the chalcogen atom due to nanoscale charge localization as revealed in transmission eigenstates analysis. The effect of spin-orbit coupling becomes more pronounced by increasing the atomic number of the chalcogen atom. Clear current rectification is obtained when the molecule is asymmetrically connected to the electrodes using different chalcogen atoms. These findings can be useful in exploring transport properties of organic molecules adsorbed on metallic surfaces using alternatives to sulfur chalcogen atoms.
最近,有人提出用硒和碲替代硫锚定基团,用于有机分子在贵金属基底上的自组装。在此,我们对锚定在具有硫醇盐、硒醇盐和碲化物端基的Au(111)电极上的单个联苯分子进行量子输运计算,同时考虑色散相互作用和自旋轨道耦合。数值结果表明,如透射本征态分析所示,由于纳米级电荷局域化,通过结的电流随着硫族原子原子序数的增加而减小。自旋轨道耦合的影响随着硫族原子原子序数的增加而变得更加显著。当分子使用不同的硫族原子不对称连接到电极时,可获得明显的电流整流。这些发现有助于利用硫族原子的替代物探索吸附在金属表面的有机分子的输运性质。