Valencia Luis, Magaña Ilse, Gálvez Marisol, Enríquez-Medrano Francisco Javier, Córdova Teresa, Cabrera Cristal, Olivares Romero José Luis, López-González Héctor Ricardo, Díaz de León Ramón
Biofiber Tech Sweden AB, Norrsken House, Birger Jarlsgatan 57C, SE-11356, Stockholm, Sweden.
Research Center for Applied Chemistry, Blvd Enrique Reyna 140, San José de los Cerritos, Saltillo, 25294, Mexico.
Sci Rep. 2025 Jan 23;15(1):2906. doi: 10.1038/s41598-024-84594-8.
As the rubber industry seeks sustainable alternatives to mitigate its environmental impact, this study introduces a biobased approach using polyfarnesene rubber reinforced with plasma-modified cellulose nanocrystals (MCNC) and nanofibers (MCNF). The nanocellulose was modified by plasma-induced polymerization using trans-β-farnesene and was characterized by FTIR, XPS, XRD, TGA, and SEM to confirm the grafting of farnesene-derived polymer chains onto the cellulose surface, demonstrating the successful modification and integration of the nanoparticles. Polyfarnesene bio-based rubbers were synthesized through two different polymerization techniques: solution-based coordination polymerization (PFA1) and emulsion-based free radical polymerization (PFA2). The modified nanoparticles were incorporated into these rubber matrices at 2-12 wt% and vulcanized by incorporation of sulfur. The performance of bio-rubbers reinforced with cellulose nanoparticles was analyzed by tensile test and dynamic mechanical analysis (DMA). Mechanical tests focused on tensile strength, Young's modulus, and elongation at break showed that incorporation of 12 wt% modified MCNF into the PFA1 and PFA2 increased tensile strength by 56% and 22%, and Young's modulus by 27% and 58%, respectively (compared to the neat rubber matrix), while elongation at break decreased with increasing MCNF content. The addition of MCNC into PFA1 and PFA2 improved the deformation resistance values of 205% for PFA1-MCNC12% and 49% for PFA2-MCNC12%. Dynamic mechanical analysis showed an increase in storage modulus and a shift towards higher glass transition temperatures, indicating stronger filler-matrix interactions. The results demonstrate that plasma-modified cellulose nanoparticles effectively enhance the mechanical properties of polyfarnesene bio-rubbers, offering a sustainable alternative with performance competitive to synthetic rubbers.
随着橡胶行业寻求可持续的替代品以减轻其环境影响,本研究引入了一种生物基方法,即使用经等离子体改性的纤维素纳米晶体(MCNC)和纳米纤维(MCNF)增强的聚法呢烯橡胶。通过使用反式-β-法呢烯的等离子体诱导聚合对纳米纤维素进行改性,并通过傅里叶变换红外光谱(FTIR)、X射线光电子能谱(XPS)、X射线衍射(XRD)、热重分析(TGA)和扫描电子显微镜(SEM)对其进行表征,以确认法呢烯衍生的聚合物链接枝到纤维素表面,证明了纳米颗粒的成功改性和整合。通过两种不同的聚合技术合成了聚法呢烯生物基橡胶:溶液基配位聚合(PFA1)和乳液基自由基聚合(PFA2)。将改性纳米颗粒以2-12 wt%的比例掺入这些橡胶基质中,并通过加入硫磺进行硫化。通过拉伸试验和动态力学分析(DMA)对纤维素纳米颗粒增强生物橡胶的性能进行了分析。聚焦于拉伸强度、杨氏模量和断裂伸长率的力学测试表明,在PFA1和PFA2中掺入12 wt%的改性MCNF分别使拉伸强度提高了56%和22%,杨氏模量提高了27%和58%(与纯橡胶基质相比),而断裂伸长率随MCNF含量的增加而降低。向PFA1和PFA2中添加MCNC提高了抗变形值,PFA1-MCNC12%为205%,PFA2-MCNC12%为49%。动态力学分析表明储能模量增加,且向更高的玻璃化转变温度移动,表明填料与基质之间的相互作用更强。结果表明,等离子体改性的纤维素纳米颗粒有效地增强了聚法呢烯生物基橡胶的力学性能,提供了一种性能可与合成橡胶竞争的可持续替代品。