Saeedi Dehaghani Amir Hossein, Gharibshahi Reza, Mohammadi Mohammad
Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran.
Sci Rep. 2025 Jan 23;15(1):2994. doi: 10.1038/s41598-025-87367-z.
Gas foam injection offers a viable solution to challenges faced in oil reservoirs, yet ensuring optimal foamability and stability remains a pivotal hurdle in practical field operations. This study presents a novel synthesis procedure to create silica (SiO) Janus nanoparticles (JNPs) and examines their potential to enhance gas foam stability for enhanced oil recovery (EOR) applications. Two variations of SiO JNPs were synthesized via a masking procedure, employing oleic acid and ascorbic acid within a Pickering emulsion, marking a pioneering approach. These nanoparticles underwent comprehensive analysis for a deeper understanding. The investigation sought to unravel the mechanisms behind these JNPs' performance in the foam injection process, probing various operational parameters such as JNP type, concentration, and gas medium (air, CO, and CH) impact on surface tension reduction, foamability, and stability through static tests. Results uncovered remarkable efficiency in SiO-oleic acid JNPs, showcasing a substantial edge in reducing surface tension compared to bare SiO nanoparticles. Specifically, at a concentration of 15,000 ppm, SiO-oleic acid JNPs demonstrated a 25 mN/m greater reduction in surface tension than bare SiO within a CH medium. Notably, while the gas type had limited influence on surface tension under standard pressure, the synthesized JNPs showed superior foam stabilization in air compared to CO and CH environments. SiO-oleic JNPs exhibited outstanding foamability, stabilizing 80% of the foam generator cell's height and remaining stable for 122 min during the EOR process. Conversely, ascorbic acid-SiO-oleic acid JNPs displayed elevated foamability but reduced stability compared to SiO-oleic acid JNPs. Despite achieving full height in the foam generator cell, stability was limited to 26 min in the CO medium.
气体泡沫注入为油藏面临的挑战提供了一种可行的解决方案,但在实际现场作业中,确保最佳的发泡性和稳定性仍然是一个关键障碍。本研究提出了一种制备二氧化硅(SiO₂)Janus纳米颗粒(JNPs)的新型合成方法,并研究了它们在提高气体泡沫稳定性以用于强化采油(EOR)应用方面的潜力。通过一种掩蔽程序,在Pickering乳液中使用油酸和抗坏血酸合成了两种不同的SiO₂ JNPs,这是一种开创性的方法。对这些纳米颗粒进行了全面分析以加深理解。该研究旨在揭示这些JNPs在泡沫注入过程中的性能背后的机制,通过静态测试探究各种操作参数,如JNP类型、浓度和气体介质(空气、CO₂和CH₄)对表面张力降低、发泡性和稳定性的影响。结果发现SiO₂ - 油酸JNPs具有显著的效率,与裸露的SiO₂纳米颗粒相比,在降低表面张力方面具有明显优势。具体而言,在15000 ppm的浓度下,SiO₂ - 油酸JNPs在CH₄介质中比裸露的SiO₂表面张力降低了25 mN/m。值得注意的是,虽然在标准压力下气体类型对表面张力的影响有限,但合成的JNPs在空气中比在CO₂和CH₄环境中表现出更好的泡沫稳定性。SiO₂ - 油酸JNPs表现出出色的发泡性,在EOR过程中使泡沫发生器单元高度的80%保持稳定,并保持稳定122分钟。相反,与SiO₂ - 油酸JNPs相比,抗坏血酸 - SiO₂ - 油酸JNPs表现出发泡性升高但稳定性降低。尽管在泡沫发生器单元中达到了全高,但在CO₂介质中的稳定性仅限于26分钟。