Taba Nele, Fischer Krista, Org Elin, Aasmets Oliver
Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia.
Institute of Mathematics and Statistics, Faculty of Science and Technology, University of Tartu, Tartu, Estonia.
Gut Microbes. 2025 Dec;17(1):2453616. doi: 10.1080/19490976.2025.2453616. Epub 2025 Jan 23.
Assessing causality is undoubtedly one of the key questions in microbiome studies for the upcoming years. Since randomized trials in human subjects are often unethical or difficult to pursue, analytical methods to derive causal effects from observational data deserve attention. As simple covariate adjustment is not likely to account for all potential confounders, the idea of instrumental variable (IV) analysis is worth exploiting. Here we propose a novel framework of antibiotic instrumental variable regression (AB-IVR) for estimating the causal relationships between microbiome and various diseases. We rely on the recent studies showing that antibiotic treatment has a cumulative long-term effect on the microbiome, resulting in individuals with higher antibiotic usage to have a more perturbed microbiome. We apply the AB-IVR method on the Estonian Biobank data and show that the microbiome has a causal role in numerous diseases including migraine, depression and irritable bowel syndrome. We show with a plethora of sensitivity analyses that the identified causal effects are robust and propose ways for further methodological developments.
评估因果关系无疑是未来几年微生物组研究的关键问题之一。由于在人类受试者中进行随机试验往往不道德或难以开展,因此从观察性数据中推导因果效应的分析方法值得关注。由于简单的协变量调整不太可能解释所有潜在的混杂因素,工具变量(IV)分析的理念值得探索。在此,我们提出了一种新型的抗生素工具变量回归(AB-IVR)框架,用于估计微生物组与各种疾病之间的因果关系。我们依据最近的研究表明,抗生素治疗对微生物组具有累积的长期影响,导致抗生素使用量较高的个体拥有更紊乱的微生物组。我们将AB-IVR方法应用于爱沙尼亚生物银行的数据,并表明微生物组在包括偏头痛、抑郁症和肠易激综合征在内的多种疾病中具有因果作用。我们通过大量的敏感性分析表明,所确定的因果效应是稳健的,并提出了进一步方法学发展的途径。