Suppr超能文献

使用高斯过程回归预测氢原子转移能垒。

Predicting hydrogen atom transfer energy barriers using Gaussian process regression.

作者信息

Ulanov Evgeni, Qadir Ghulam A, Riedmiller Kai, Friederich Pascal, Gräter Frauke

机构信息

Heidelberg Institute for Theoretical Studies Heidelberg Germany

Max Planck Institute for Polymer Research Mainz Germany.

出版信息

Digit Discov. 2025 Jan 10;4(2):513-522. doi: 10.1039/d4dd00174e. eCollection 2025 Feb 12.

Abstract

Predicting reaction barriers for arbitrary configurations based on only a limited set of density functional theory (DFT) calculations would render the design of catalysts or the simulation of reactions within complex materials highly efficient. We here propose Gaussian process regression (GPR) as a method of choice if DFT calculations are limited to hundreds or thousands of barrier calculations. For the case of hydrogen atom transfer in proteins, an important reaction in chemistry and biology, we obtain a mean absolute error of 3.23 kcal mol for the range of barriers in the data set using SOAP descriptors and similar values using the marginalized graph kernel. Thus, the two GPR models can robustly estimate reaction barriers within the large chemical and conformational space of proteins. Their predictive power is comparable to a graph neural network-based model, and GPR even outcompetes the latter in the low data regime. We propose GPR as a valuable tool for an approximate but data-efficient model of chemical reactivity in a complex and highly variable environment.

摘要

仅基于有限的一组密度泛函理论(DFT)计算来预测任意构型的反应势垒,将使催化剂设计或复杂材料内反应的模拟变得高效。如果DFT计算仅限于数百或数千次势垒计算,我们在此提出高斯过程回归(GPR)作为一种选择方法。对于蛋白质中氢原子转移这一化学和生物学中的重要反应,使用SOAP描述符时,我们在数据集中势垒范围内得到的平均绝对误差为3.23千卡/摩尔,使用边缘化图核时得到类似值。因此,这两个GPR模型能够在蛋白质的大化学和构象空间内稳健地估计反应势垒。它们的预测能力与基于图神经网络的模型相当,并且在低数据量情况下GPR甚至优于后者。我们提出GPR作为一种有价值的工具,用于在复杂且高度可变的环境中构建近似但数据高效的化学反应性模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a537/11747964/5c0b1f1edfa8/d4dd00174e-f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验