Suppr超能文献

蛋白质键断裂的混合动力学蒙特卡罗/分子动力学模拟。

Hybrid Kinetic Monte Carlo/Molecular Dynamics Simulations of Bond Scissions in Proteins.

机构信息

Heidelberg Institute for Theoretical Studies , Schloss-Wolfsbrunnenweg 35 , 69118 Heidelberg , Germany.

Institute for Theoretical Physics , Heidelberg University , Philosophenweg 16 , 69120 Heidelberg , Germany.

出版信息

J Chem Theory Comput. 2020 Jan 14;16(1):553-563. doi: 10.1021/acs.jctc.9b00786. Epub 2019 Dec 4.

Abstract

Proteins are exposed to various mechanical loads that can lead to covalent bond scissions even before macroscopic failure occurs. Knowledge of these molecular breakages is important to understand mechanical properties of the protein. In regular molecular dynamics (MD) simulations, covalent bonds are predefined, and reactions cannot occur. Furthermore, such events rarely take place on MD time scales. Existing approaches that tackle this limitation either rely on computationally expensive quantum calculations (e.g., QM/MM) or complex bond order formalisms in force fields (e.g., ReaxFF). To circumvent these limitations, we present a new reactive kinetic Monte Carlo/molecular dynamics (KIMMDY) scheme. Here, bond rupture rates are calculated based on the interatomic distances in the MD simulation and then serve as an input for a kinetic Monte Carlo step. This easily scalable hybrid approach drastically increases the accessible time scales. Using this new technique, we investigate bond ruptures in a multimillion atom system of tensed collagen, a structural protein found in skin, bones, and tendons. Our findings show a clear concentration of bond scissions near chemical cross-links in collagen. We also examine subsequent dynamic relaxation steps. Our method exhibits only a minor slowdown compared to classical MD and is straightforwardly applicable to other complex (bio)materials under load and related chemistries.

摘要

蛋白质会受到各种机械载荷的影响,即使在宏观失效发生之前,也会导致共价键断裂。了解这些分子断裂对于理解蛋白质的力学性能非常重要。在常规的分子动力学(MD)模拟中,共价键是预先定义的,不能发生反应。此外,此类事件在 MD 时间尺度上很少发生。现有的解决此限制的方法要么依赖于计算成本高昂的量子计算(例如 QM/MM),要么依赖于力场中的复杂键序形式(例如 ReaxFF)。为了规避这些限制,我们提出了一种新的反应动力学蒙特卡罗/分子动力学(KIMMDY)方案。在这里,根据 MD 模拟中的原子间距离计算键断裂速率,然后将其作为动力学蒙特卡罗步骤的输入。这种易于扩展的混合方法大大增加了可访问的时间尺度。使用这项新技术,我们研究了紧张胶原(一种存在于皮肤、骨骼和肌腱中的结构蛋白)中数百万个原子系统中的键断裂。我们的研究结果表明,在胶原中化学键断裂明显集中在化学交联附近。我们还检查了随后的动态松弛步骤。与经典 MD 相比,我们的方法仅略有减速,并且可以直接应用于其他复杂(生物)材料在负载下的相关化学。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验