Suppr超能文献

在重症监护病房的急性中风患者中使用机器学习预测谵妄的发生

Prediction of delirium occurrence using machine learning in acute stroke patients in intensive care unit.

作者信息

Kim Hyungjun, Kim Min, Kim Da Young, Seo Dong Gi, Hong Ji Man, Yoon Dukyong

机构信息

Department of Biomedical Informatics, Ajou University School of Medicine, Suwon, Republic of Korea.

MDHi Corp, Suwon, Republic of Korea.

出版信息

Front Neurosci. 2025 Jan 9;18:1425562. doi: 10.3389/fnins.2024.1425562. eCollection 2024.

Abstract

INTRODUCTION

Delirium, frequently experienced by ischemic stroke patients, is one of the most common neuropsychiatric syndromes reported in the Intensive Care Unit (ICU). Stroke patients with delirium have a high mortality rate and lengthy hospitalization. For these reasons, early diagnosis of delirium in the ICU is critical for better patient prognosis. Therefore, we developed and validated prediction models to classify the real-time delirium status in patients admitted to the ICU or Stroke Unit (SU) with ischemic stroke.

METHODS

A total of 84 delirium patients and 336 non-delirium patients in the ICU of Ajou University Hospital were included. The 8 fixed features [Age, Sex, Alcohol Intake, National Institute of Health Stroke Scale (NIHSS), HbA1c, Prothrombin time, D-dimer, and Hemoglobin] identified at admission and 12 dynamic features [Mean or Variability indexes calculated from Body Temperature (BT), Heart Rate (HR), Respiratory Rate (RR), Oxygen saturation (SpO2), Systolic Blood Pressure (SBP), and Diastolic Blood Pressure (DBP)] based on vital signs were used for developing prediction models using the ensemble method.

RESULTS

The Area Under the Receiver Operating Characteristic curve (AUROC) for delirium-state classification was 0.80. In simulation-based evaluation, AUROC was 0.71, and the predicted probability increased closer to the time of delirium occurrence. We observed that the patterns of dynamic features, including BT, SpO2, RR, and Heart Rate Variability (HRV) kept changing as the time points were getting closer to the delirium occurrence time. Therefore, the model that employed these patterns showed increasing prediction performance.

CONCLUSION

Our model can predict the real-time possibility of delirium in patients with ischemic stroke and will be helpful to monitor high-risk patients.

摘要

引言

谵妄是缺血性中风患者常经历的症状,是重症监护病房(ICU)报告的最常见神经精神综合征之一。患有谵妄的中风患者死亡率高且住院时间长。因此,在ICU中早期诊断谵妄对改善患者预后至关重要。为此,我们开发并验证了预测模型,以对入住ICU或卒中单元(SU)的缺血性中风患者的实时谵妄状态进行分类。

方法

纳入了成均馆大学医院ICU的84例谵妄患者和336例非谵妄患者。入院时确定的8个固定特征[年龄、性别、酒精摄入量、美国国立卫生研究院卒中量表(NIHSS)、糖化血红蛋白(HbA1c)、凝血酶原时间、D-二聚体和血红蛋白]以及基于生命体征的12个动态特征[根据体温(BT)、心率(HR)、呼吸频率(RR)、血氧饱和度(SpO2)、收缩压(SBP)和舒张压(DBP)计算的均值或变异指数]用于使用集成方法开发预测模型。

结果

用于谵妄状态分类的受试者操作特征曲线下面积(AUROC)为0.80。在基于模拟的评估中,AUROC为0.71,并且预测概率在接近谵妄发生时间时增加。我们观察到,随着时间点接近谵妄发生时间,包括BT、SpO2、RR和心率变异性(HRV)在内的动态特征模式不断变化。因此,采用这些模式的模型显示出不断提高的预测性能。

结论

我们的模型可以预测缺血性中风患者谵妄的实时可能性,有助于监测高危患者。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/40ae/11754397/e69c3ea05f97/fnins-18-1425562-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验