Suppr超能文献

具有高断裂韧性和抗低温降解性能的牙龈软组织一体化氧化锆基台

Gingival Soft Tissue Integrative Zirconia Abutments with High Fracture Toughness and Low-Temperature Degradation Resistance.

作者信息

Li Qiulan, Yao Mianfeng, Yang Yunxu, Lin Bixiao, Chen Hongio, Luo Huixia, Zhang Chao, Huang Yanhao, Jian Yutao, Zhao Ke, Wang Xiaodong

机构信息

Hospital of Stomatology, Sun Yat-Sen University, Guangzhou 510055, China.

Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China.

出版信息

Biomater Res. 2025 Jan 23;29:0137. doi: 10.34133/bmr.0137. eCollection 2025.

Abstract

Low fracture toughness, low-temperature degradation (LTD) susceptibility, and inadequate soft tissue integration greatly limit the application of zirconia ceramic abutment. Integrating the "surface" of hard all-ceramic materials into the gingival soft tissue and simultaneously promoting the "inner" LTD resistance and fracture toughness is challenging. Composite ceramics are effective in improving the comprehensive properties of materials. In this study, we aim to develop a zirconia composite abutment with high "inner" structure stability and "surface" bioactivities simultaneously and to explore the mechanism of performance improvement. Therefore, elongated SrAlO and equiaxed AlO were introduced into the zirconia matrix by using the Pechini method. Reinforcements of different shapes can promote the density, reduce the grain size, and increase the phase stability of composite ceramics, which improves the fracture toughness and LTD susceptibility. In addition, the released strontium ions (Sr), without sacrificing the mechanical properties of the material, could activate the biological capacity of the zirconia surface by activating the M2 polarization of macrophages through the Sr/calcium-sensing receptor/SH3 domain-binding protein 5 axis, thereby promoting the collagen matrix synthesis of fibroblasts and the angiogenesis of vascular endothelial cells. This successful case proposes a novel strategy for the development of advanced high-strength and bioactive all-ceramic materials by introducing reinforcements containing biofunctional elements into the ceramic matrix. The approach paves the way for the widespread application of such all-ceramic materials in soft-tissue-related areas.

摘要

低断裂韧性、低温降解(LTD)敏感性以及软组织整合不足极大地限制了氧化锆陶瓷基台的应用。将硬质全陶瓷材料的“表面”与牙龈软组织整合,同时提高其“内部”的LTD抗性和断裂韧性具有挑战性。复合陶瓷在改善材料综合性能方面很有效。在本研究中,我们旨在同时开发一种具有高“内部”结构稳定性和“表面”生物活性的氧化锆复合基台,并探索其性能改善机制。因此,采用佩琴尼法将细长的SrAlO和等轴的AlO引入氧化锆基体中。不同形状的增强体可提高复合陶瓷的密度、减小晶粒尺寸并增加相稳定性,从而改善断裂韧性和LTD敏感性。此外,释放的锶离子(Sr)在不牺牲材料力学性能的情况下,可通过Sr/钙敏感受体/SH3结构域结合蛋白5轴激活巨噬细胞的M2极化,从而激活氧化锆表面的生物活性,进而促进成纤维细胞的胶原基质合成和血管内皮细胞的血管生成。这一成功案例为通过将含有生物功能元素的增强体引入陶瓷基体来开发先进的高强度和生物活性全陶瓷材料提出了一种新策略。该方法为这类全陶瓷材料在软组织相关领域的广泛应用铺平了道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a677/11756602/f90d78cc25a2/bmr.0137.fig.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验