Mushta Illia, Koks Sulev, Popov Anton, Lysenko Oleksandr
Department of Electronic Computational Equipment Design, National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute", 03056 Kyiv, Ukraine.
Perron Institute for Neurological and Translational Science, Murdoch University, Nedlands, WA 6009, Australia.
Bioengineering (Basel). 2024 Dec 27;12(1):11. doi: 10.3390/bioengineering12010011.
Parkinson's disease (PD) is a neurodegenerative disorder characterized by motor and neuropsychiatric symptoms resulting from the loss of dopamine-producing neurons in the substantia nigra pars compacta (SNc). Dopamine transporter scan (DATSCAN), based on single-photon emission computed tomography (SPECT), is commonly used to evaluate the loss of dopaminergic neurons in the striatum. This study aims to identify a biomarker from DATSCAN images and develop a machine learning (ML) algorithm for PD diagnosis. Using 13 DATSCAN-derived parameters and patient handedness from 1309 individuals in the Parkinson's Progression Markers Initiative (PPMI) database, we trained an AdaBoost classifier, achieving an accuracy of 98.88% and an area under the receiver operating characteristic (ROC) curve of 99.81%. To ensure interpretability, we applied the local interpretable model-agnostic explainer (LIME), identifying contralateral putamen SBR as the most predictive feature for distinguishing PD from healthy controls. By focusing on a single biomarker, our approach simplifies PD diagnosis, integrates seamlessly into clinical workflows, and provides interpretable, actionable insights. Although DATSCAN has limitations in detecting early-stage PD, our study demonstrates the potential of ML to enhance diagnostic precision, contributing to improved clinical decision-making and patient outcomes.
帕金森病(PD)是一种神经退行性疾病,其特征是由于黑质致密部(SNc)中产生多巴胺的神经元丧失而导致运动和神经精神症状。基于单光子发射计算机断层扫描(SPECT)的多巴胺转运体扫描(DATSCAN)通常用于评估纹状体中多巴胺能神经元的丧失。本研究旨在从DATSCAN图像中识别一种生物标志物,并开发一种用于PD诊断的机器学习(ML)算法。利用帕金森病进展标志物倡议(PPMI)数据库中1309名个体的13个DATSCAN衍生参数和患者利手情况,我们训练了一个AdaBoost分类器,准确率达到98.88%,受试者操作特征(ROC)曲线下面积为99.81%。为确保可解释性,我们应用了局部可解释模型无关解释器(LIME),确定对侧壳核标准化摄取值比(SBR)是区分PD与健康对照的最具预测性的特征。通过关注单一生物标志物,我们的方法简化了PD诊断,无缝集成到临床工作流程中,并提供了可解释的、可操作的见解。尽管DATSCAN在检测早期PD方面存在局限性,但我们的研究证明了ML提高诊断精度的潜力,有助于改善临床决策和患者预后。