Suppr超能文献

机器学习在帕金森病诊断中的应用。

Applications of Machine Learning to Diagnosis of Parkinson's Disease.

作者信息

Lai Hong, Li Xu-Ying, Xu Fanxi, Zhu Junge, Li Xian, Song Yang, Wang Xianlin, Wang Zhanjun, Wang Chaodong

机构信息

Department of Neurology, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing 100053, China.

Department of Neurology, The First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China.

出版信息

Brain Sci. 2023 Nov 3;13(11):1546. doi: 10.3390/brainsci13111546.

Abstract

BACKGROUND

Accurate diagnosis of Parkinson's disease (PD) is challenging due to its diverse manifestations. Machine learning (ML) algorithms can improve diagnostic precision, but their generalizability across medical centers in China is underexplored.

OBJECTIVE

To assess the accuracy of an ML algorithm for PD diagnosis, trained and tested on data from different medical centers in China.

METHODS

A total of 1656 participants were included, with 1028 from Beijing (training set) and 628 from Fuzhou (external validation set). Models were trained using the least absolute shrinkage and selection operator-logistic regression (LASSO-LR), decision tree (DT), random forest (RF), eXtreme gradient boosting (XGboost), support vector machine (SVM), and k-nearest neighbor (KNN) techniques. Hyperparameters were optimized using five-fold cross-validation and grid search techniques. Model performance was evaluated using the area under the curve (AUC) of the receiver operating characteristic (ROC) curve, accuracy, sensitivity (recall), specificity, precision, and F1 score. Variable importance was assessed for all models.

RESULTS

SVM demonstrated the best differentiation between healthy controls (HCs) and PD patients (AUC: 0.928, 95% CI: 0.908-0.947; accuracy: 0.844, 95% CI: 0.814-0.871; sensitivity: 0.826, 95% CI: 0.786-0.866; specificity: 0.861, 95% CI: 0.820-0.898; precision: 0.849, 95% CI: 0.807-0.891; F1 score: 0.837, 95% CI: 0.803-0.868) in the validation set. Constipation, olfactory decline, and daytime somnolence significantly influenced predictability.

CONCLUSION

We identified multiple pivotal variables and SVM as a precise and clinician-friendly ML algorithm for prediction of PD in Chinese patients.

摘要

背景

帕金森病(PD)表现多样,准确诊断具有挑战性。机器学习(ML)算法可提高诊断精度,但在中国各医疗中心的通用性尚未得到充分探索。

目的

评估一种基于中国不同医疗中心数据进行训练和测试的ML算法对PD诊断的准确性。

方法

共纳入1656名参与者,其中1028名来自北京(训练集),628名来自福州(外部验证集)。使用最小绝对收缩和选择算子逻辑回归(LASSO-LR)、决策树(DT)、随机森林(RF)、极端梯度提升(XGboost)、支持向量机(SVM)和k近邻(KNN)技术训练模型。使用五折交叉验证和网格搜索技术优化超参数。使用受试者操作特征(ROC)曲线的曲线下面积(AUC)、准确性、敏感性(召回率)、特异性、精确率和F1分数评估模型性能。评估所有模型的变量重要性。

结果

在验证集中,支持向量机在区分健康对照(HC)和帕金森病患者方面表现最佳(AUC:0.928,95%CI:0.908-0.947;准确性:0.844,95%CI:0.814-0.871;敏感性:0.826,95%CI:0.786-0.866;特异性:0.861,95%CI:0.820-0.898;精确率:0.849,95%CI:0.807-0.891;F1分数:0.837,95%CI:0.803-0.868)。便秘、嗅觉减退和日间嗜睡显著影响预测性。

结论

我们确定了多个关键变量,并将支持向量机确定为一种精确且对临床医生友好的ML算法,用于预测中国患者的帕金森病。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4846/10670005/771c895359a0/brainsci-13-01546-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验