Suppr超能文献

使用DaTscan图像的用于帕金森病检测的卷积神经网络模型集成

An Ensemble of CNN Models for Parkinson's Disease Detection Using DaTscan Images.

作者信息

Kurmi Ankit, Biswas Shreya, Sen Shibaprasad, Sinitca Aleksandr, Kaplun Dmitrii, Sarkar Ram

机构信息

Department of Computer Science and Engineering, Kalyani Government Engineering College, Kalyani 741235, West Bengal, India.

Department of Electronics and Telecommunication Engineering, Jadavpur University, Kolkata 700032, West Bengal, India.

出版信息

Diagnostics (Basel). 2022 May 8;12(5):1173. doi: 10.3390/diagnostics12051173.

Abstract

Parkinson's Disease (PD) is a progressive central nervous system disorder that is caused due to the neural degeneration mainly in the substantia nigra in the brain. It is responsible for the decline of various motor functions due to the loss of dopamine-producing neurons. Tremors in hands is usually the initial symptom, followed by rigidity, bradykinesia, postural instability, and impaired balance. Proper diagnosis and preventive treatment can help patients improve their quality of life. We have proposed an ensemble of Deep Learning (DL) models to predict Parkinson's using DaTscan images. Initially, we have used four DL models, namely, VGG16, ResNet50, Inception-V3, and Xception, to classify Parkinson's disease. In the next stage, we have applied a Fuzzy Fusion logic-based ensemble approach to enhance the overall result of the classification model. The proposed model is assessed on a publicly available database provided by the Parkinson's Progression Markers Initiative (PPMI). The achieved recognition accuracy, Precision, Sensitivity, Specificity, F1-score from the proposed model are 98.45%, 98.84%, 98.84%, 97.67%, and 98.84%, respectively which are higher than the individual model. We have also developed a Graphical User Interface (GUI)-based software tool for public use that instantly detects all classes using Magnetic Resonance Imaging (MRI) with reasonable accuracy. The proposed method offers better performance compared to other state-of-the-art methods in detecting PD. The developed GUI-based software tool can play a significant role in detecting the disease in real-time.

摘要

帕金森病(PD)是一种进行性中枢神经系统疾病,主要由大脑黑质中的神经退行性变引起。由于产生多巴胺的神经元丧失,它导致各种运动功能下降。手部震颤通常是初始症状,随后是僵硬、运动迟缓、姿势不稳和平衡受损。正确的诊断和预防性治疗有助于患者提高生活质量。我们提出了一组深度学习(DL)模型,用于使用DaTscan图像预测帕金森病。最初,我们使用了四种DL模型,即VGG16、ResNet50、Inception-V3和Xception,对帕金森病进行分类。在下一阶段,我们应用了基于模糊融合逻辑的集成方法来提高分类模型的整体结果。所提出的模型在帕金森病进展标记倡议(PPMI)提供的公开数据库上进行评估。所提出模型实现的识别准确率、精确率、灵敏度、特异性、F1分数分别为98.45%、98.84%、98.84%、97.67%和98.84%,均高于单个模型。我们还开发了一个基于图形用户界面(GUI)的软件工具供公众使用,该工具使用磁共振成像(MRI)能以合理的准确率即时检测所有类别。与其他现有技术方法相比,所提出的方法在检测帕金森病方面具有更好的性能。所开发的基于GUI的软件工具在实时检测该疾病方面可以发挥重要作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验