Kawaguchi Atsushi, Yamashita Fumio
Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga 849-8501, Japan.
Division of Ultrahigh Field MRI, Iwate Medical University, 1-1-1 Idaidori, Yahaba 028-3694, Japan.
Bioengineering (Basel). 2025 Jan 9;12(1):48. doi: 10.3390/bioengineering12010048.
The neuropathological diagnosis of Alzheimer's disease (AD) relies on amyloid beta (Aβ) deposition in brain tissues. To study the relationship between Aβ deposition and brain structure, as determined using C-Pittsburgh compound B (PiB) and magnetic resonance imaging (MRI), respectively, we developed a regression model with PiB and MRI data as the predictor and response variables, respectively, and proposed a regression method for studying the association between them based on a supervised sparse multivariate analysis with dimension reduction based on a composite paired basis function. By applying this method to imaging data of 61 patients with AD (age: 55-85), the first component showed the strongest correlation with the composite score, owing to the supervised feature. The spatial pattern included the hippocampal and parahippocampal regions for MRI. The peak value was observed in the posterior cingulate and precuneus for PiB. The differences in PiB scores among the diagnosis groups 12 months after PiB imaging were significant between the normal and AD groups ( = 0.0284), but not between the normal and mild cognitive impairment (MCI) groups or the MCI and AD groups ( = 0.3508). Our method may facilitate the development of a dementia biomarker from brain imaging data. Scoring imaging data allows for visualization and the application of traditional analysis, facilitating clinical analysis for better interpretation of results.
阿尔茨海默病(AD)的神经病理学诊断依赖于脑组织中的β淀粉样蛋白(Aβ)沉积。为了研究分别使用C-匹兹堡化合物B(PiB)和磁共振成像(MRI)测定的Aβ沉积与脑结构之间的关系,我们开发了一个回归模型,分别将PiB和MRI数据作为预测变量和响应变量,并基于具有复合配对基函数的监督稀疏多变量分析和降维,提出了一种研究它们之间关联的回归方法。通过将该方法应用于61例AD患者(年龄:55 - 85岁)的成像数据,由于具有监督特征,第一成分与综合评分显示出最强的相关性。MRI的空间模式包括海马体和海马旁区域。PiB的峰值出现在后扣带回和楔前叶。PiB成像12个月后诊断组之间的PiB评分差异在正常组和AD组之间具有显著性( = 0.0284),但在正常组和轻度认知障碍(MCI)组之间或MCI组和AD组之间无显著性差异( = 0.3508)。我们的方法可能有助于从脑成像数据中开发痴呆生物标志物。对成像数据进行评分可实现可视化并应用传统分析方法,便于临床分析以更好地解释结果。