Suppr超能文献

眼底网:一种使用眼底图像快速诊断神经退行性疾病和眼部疾病的深度学习方法。

FundusNet: A Deep-Learning Approach for Fast Diagnosis of Neurodegenerative and Eye Diseases Using Fundus Images.

作者信息

Hu Wenxing, Li Kejie, Gagnon Jake, Wang Ye, Raney Talia, Chen Jeron, Chen Yirui, Okunuki Yoko, Chen Will, Zhang Baohong

机构信息

Research Department, Biogen, Inc., 225 Binney St., Cambridge, MA 02142, USA.

出版信息

Bioengineering (Basel). 2025 Jan 13;12(1):57. doi: 10.3390/bioengineering12010057.

Abstract

Early-stage detection of neurodegenerative diseases is crucial for effective clinical treatment. However, current diagnostic methods are expensive and time-consuming. In this study, we present FundusNet, a deep-learning model trained on fundus images, for rapid and cost-effective diagnosis of neurodegenerative diseases. FundusNet achieved superior performance in age prediction (MAE 2.55 year), gender classification (AUC 0.98), and neurodegenerative disease diagnosis-Parkinson's disease AUC 0.75 ± 0.03, multiple sclerosis AUC 0.77 ± 0.02. Grad-CAM was used to identify which part of the image contributes to diagnosis. Imaging biomarker interpretation demonstrated that FundusNet effectively identifies clinical retina structures associated with diseases. Additionally, the model's high accuracy in predicting genetic risk suggests that its performance could be further enhanced with larger training datasets.

摘要

神经退行性疾病的早期检测对于有效的临床治疗至关重要。然而,目前的诊断方法既昂贵又耗时。在本研究中,我们提出了FundusNet,这是一种基于眼底图像训练的深度学习模型,用于快速且经济高效地诊断神经退行性疾病。FundusNet在年龄预测(平均绝对误差2.55岁)、性别分类(曲线下面积0.98)以及神经退行性疾病诊断方面表现出色——帕金森病曲线下面积0.75±0.03,多发性硬化症曲线下面积0.77±0.02。使用Grad-CAM来确定图像的哪一部分有助于诊断。成像生物标志物解释表明FundusNet能够有效地识别与疾病相关的临床视网膜结构。此外,该模型在预测遗传风险方面的高准确率表明,通过更大的训练数据集,其性能可能会进一步提高。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2fd3/11762182/357caa690f4e/bioengineering-12-00057-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验