Lee Jemyoung, Kim Minbeom, Park Heejun, Yang Zepa, Woo Ok Hee, Kang Woo Young, Kim Jong Hyo
Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea.
ClariPi Research, ClariPi Inc., Seoul 03088, Republic of Korea.
Bioengineering (Basel). 2025 Jan 13;12(1):64. doi: 10.3390/bioengineering12010064.
This study evaluated the applicability of the classical method, height loss ratio (HLR), for identifying major acute compression fractures in clinical practice and compared its performance with deep learning (DL)-based VCF detection methods. Additionally, it examined whether combining the HLR with DL approaches could enhance performance, exploring the potential integration of classical and DL methodologies.
End-to-End VCF Detection (EEVD), Two-Stage VCF Detection with Segmentation and Detection (TSVD_SD), and Two-Stage VCF Detection with Detection and Classification (TSVD_DC). The models were evaluated on a dataset of 589 patients, focusing on sensitivity, specificity, accuracy, and precision.
TSVD_SD outperformed all other methods, achieving the highest sensitivity (84.46%) and accuracy (95.05%), making it particularly effective for identifying true positives. The complementary use of DL methods with HLR further improved detection performance. For instance, combining HLR-negative cases with TSVD_SD increased sensitivity to 87.84%, reducing missed fractures, while combining HLR-positive cases with EEVD achieved the highest specificity (99.77%), minimizing false positives.
These findings demonstrated that DL-based approaches, particularly TSVD_SD, provided robust alternatives or complements to traditional methods, significantly enhancing diagnostic accuracy for acute VCFs in clinical practice.
本研究评估经典方法——身高损失率(HLR)在临床实践中识别主要急性压缩性骨折的适用性,并将其性能与基于深度学习(DL)的椎体压缩性骨折(VCF)检测方法进行比较。此外,研究还探讨了将HLR与DL方法相结合是否能提高性能,探索经典方法与DL方法潜在的整合方式。
端到端VCF检测(EEVD)、带分割与检测的两阶段VCF检测(TSVD_SD)以及带检测与分类的两阶段VCF检测(TSVD_DC)。在一个包含589名患者的数据集上对这些模型进行评估,重点关注敏感性、特异性、准确性和精确性。
TSVD_SD的表现优于所有其他方法,具有最高的敏感性(84.46%)和准确性(95.05%),使其在识别真阳性方面特别有效。DL方法与HLR的互补使用进一步提高了检测性能。例如,将HLR阴性病例与TSVD_SD相结合可将敏感性提高到87.84%,减少漏诊骨折,而将HLR阳性病例与EEVD相结合可实现最高的特异性(99.77%),将假阳性降至最低。
这些发现表明,基于DL的方法,特别是TSVD_SD,可以为传统方法提供强大的替代或补充,显著提高临床实践中急性VCF的诊断准确性。