Suppr超能文献

一种用于计算机断层成像的自动椎体定位、分割和骨质疏松性压缩性骨折检测流水线。

An Automated Vertebrae Localization, Segmentation, and Osteoporotic Compression Fracture Detection Pipeline for Computed Tomographic Imaging.

机构信息

BioSensics, LLC, 57 Chapel Street, Newton, MA, 02458, USA.

Carl J. Shapiro Department of Orthopedic Surgery, Beth Israel Deaconess Medical Center (BIDMC), Harvard Medical School, 330 Brookline Avenue, Stoneman 10, Boston, MA, 02215, USA.

出版信息

J Imaging Inform Med. 2024 Oct;37(5):2428-2443. doi: 10.1007/s10278-024-01135-5. Epub 2024 May 8.

Abstract

Osteoporosis is the most common chronic metabolic bone disease worldwide. Vertebral compression fracture (VCF) is the most common type of osteoporotic fracture. Approximately 700,000 osteoporotic VCFs are diagnosed annually in the USA alone, resulting in an annual economic burden of ~$13.8B. With an aging population, the rate of osteoporotic VCFs and their associated burdens are expected to rise. Those burdens include pain, functional impairment, and increased medical expenditure. Therefore, it is of utmost importance to develop an analytical tool to aid in the identification of VCFs. Computed Tomography (CT) imaging is commonly used to detect occult injuries. Unlike the existing VCF detection approaches based on CT, the standard clinical criteria for determining VCF relies on the shape of vertebrae, such as loss of vertebral body height. We developed a novel automated vertebrae localization, segmentation, and osteoporotic VCF detection pipeline for CT scans using state-of-the-art deep learning models to bridge this gap. To do so, we employed a publicly available dataset of spine CT scans with 325 scans annotated for segmentation, 126 of which also graded for VCF (81 with VCFs and 45 without VCFs). Our approach attained 96% sensitivity and 81% specificity in detecting VCF at the vertebral-level, and 100% accuracy at the subject-level, outperforming deep learning counterparts tested for VCF detection without segmentation. Crucially, we showed that adding predicted vertebrae segments as inputs significantly improved VCF detection at both vertebral and subject levels by up to 14% Sensitivity and 20% Specificity (p-value = 0.028).

摘要

骨质疏松症是全球最常见的慢性代谢性骨病。椎体压缩性骨折(VCF)是最常见的骨质疏松性骨折类型。仅在美国,每年就诊断出约 70 万例骨质疏松性 VCF,导致每年的经济负担约为 138 亿美元。随着人口老龄化,骨质疏松性 VCF 的发生率及其相关负担预计将上升。这些负担包括疼痛、功能障碍和医疗支出增加。因此,开发一种分析工具来帮助识别 VCF 至关重要。计算机断层扫描(CT)成像通常用于检测隐匿性损伤。与基于 CT 的现有 VCF 检测方法不同,确定 VCF 的标准临床标准依赖于椎体的形状,例如椎体高度的丧失。我们使用最先进的深度学习模型为 CT 扫描开发了一种新颖的自动椎体定位、分割和骨质疏松性 VCF 检测管道,以弥补这一差距。为此,我们使用了一个公开的脊柱 CT 扫描数据集,其中 325 个扫描被注释用于分割,其中 126 个还被分级为 VCF(81 个有 VCF,45 个没有 VCF)。我们的方法在检测椎体水平的 VCF 时达到了 96%的灵敏度和 81%的特异性,在检测受试者水平的 VCF 时达到了 100%的准确性,优于未经分割检测 VCF 的深度学习对照物。至关重要的是,我们表明,通过添加预测的椎体段作为输入,可将椎体和受试者水平的 VCF 检测灵敏度分别提高高达 14%和 20%,特异性提高高达 20%(p 值=0.028)。

相似文献

9
Effect of compression fracture on trabecular bone score at lumbar spine.压缩性骨折对腰椎骨小梁评分的影响。
Osteoporos Int. 2021 May;32(5):961-970. doi: 10.1007/s00198-020-05707-3. Epub 2020 Oct 26.

本文引用的文献

1
4
Going Deeper, Generalizing Better: An Information-Theoretic View for Deep Learning.深入挖掘,更好地泛化:深度学习的信息论视角
IEEE Trans Neural Netw Learn Syst. 2024 Nov;35(11):16683-16695. doi: 10.1109/TNNLS.2023.3297113. Epub 2024 Oct 29.
7
Uncertainty Estimation for Heatmap-Based Landmark Localization.基于热图的地标定位的不确定性估计
IEEE Trans Med Imaging. 2023 Apr;42(4):1021-1034. doi: 10.1109/TMI.2022.3222730. Epub 2023 Apr 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验