Pan Shihao, Shen Tongyuan, Lian Yongxiang, Shi Li
Department of Automation, Tsinghua University, Beijing 100084, China.
School of Economics and Management, Beihang University, Beijing 100084, China.
Brain Sci. 2024 Dec 29;15(1):27. doi: 10.3390/brainsci15010027.
The segmentation of electroencephalography (EEG) signals into a limited number of microstates is of significant importance in the field of cognitive neuroscience. Currently, the microstate analysis algorithm based on global field power has demonstrated its efficacy in clustering resting-state EEG. The task-related EEG was extensively analyzed in the field of brain-computer interfaces (BCIs); however, its primary objective is classification rather than segmentation.
We propose an innovative algorithm for analyzing task-related EEG microstates based on spatial patterns, Riemannian distance, and a modified deep autoencoder. The objective of this algorithm is to achieve unsupervised segmentation and clustering of task-related EEG signals.
The proposed algorithm was validated through experiments conducted on simulated EEG data and two publicly available cognitive task datasets. The evaluation results and statistical tests demonstrate its robustness and efficiency in clustering task-related EEG microstates.
The proposed unsupervised algorithm can autonomously discretize EEG signals into a finite number of microstates, thereby facilitating investigations into the temporal structures underlying cognitive processes.
将脑电图(EEG)信号分割为有限数量的微状态在认知神经科学领域具有重要意义。目前,基于全局场功率的微状态分析算法已在静息态EEG聚类中证明了其有效性。与任务相关的EEG在脑机接口(BCI)领域得到了广泛分析;然而,其主要目标是分类而非分割。
我们提出了一种基于空间模式、黎曼距离和改进的深度自动编码器来分析与任务相关的EEG微状态的创新算法。该算法的目标是实现对与任务相关的EEG信号进行无监督分割和聚类。
通过对模拟EEG数据和两个公开可用的认知任务数据集进行实验,对所提出的算法进行了验证。评估结果和统计测试证明了其在聚类与任务相关的EEG微状态方面的稳健性和效率。
所提出的无监督算法可以自动将EEG信号离散化为有限数量的微状态,从而便于对认知过程背后的时间结构进行研究。