Suppr超能文献

淀粉样β蛋白和tau蛋白磷酸化以及RhoA活性诱导阿尔茨海默病的分子机制:RhoA/ Rho相关蛋白激酶抑制剂用于神经元治疗的前景

Molecular Mechanisms of Alzheimer's Disease Induced by Amyloid-β and Tau Phosphorylation Along with RhoA Activity: Perspective of RhoA/Rho-Associated Protein Kinase Inhibitors for Neuronal Therapy.

作者信息

Ahn Eun Hee, Park Jae-Bong

机构信息

Department of Physiology, Hallym University College of Medicine, Chuncheon 24252, Kangwon-do, Republic of Korea.

Department of Neurology, Hallym University College of Medicine, Chuncheon 24252, Kangwon-do, Republic of Korea.

出版信息

Cells. 2025 Jan 10;14(2):89. doi: 10.3390/cells14020089.

Abstract

Amyloid-β peptide (Aβ) is a critical cause of Alzheimer's disease (AD). It is generated from amyloid precursor protein (APP) through cleavages by β-secretase and γ-secretase. γ-Secretase, which includes presenilin, is regulated by several stimuli. Tau protein has also been identified as a significant factor in AD. In particular, Tau phosphorylation is crucial for neuronal impairment, as phosphorylated Tau detaches from microtubules, leading to the formation of neurofibrillary tangles and the destabilization of the microtubule structure. This instability in microtubules damages axons and dendrites, resulting in neuronal impairment. Notably, Aβ is linked to Tau phosphorylation. Another crucial factor in AD is neuroinflammation, primarily occurring in the microglia. Microglia possess several receptors that bind with Aβ, triggering the expression and release of an inflammatory factor, although their main physiological function is to phagocytose debris and pathogens in the brain. NF-κB activation plays a major role in neuroinflammation. Additionally, the production of reactive oxygen species (ROS) in the microglia contributes to this neuroinflammation. In microglia, superoxide is produced through NADPH oxidase, specifically NOX2. Rho GTPases play an essential role in regulating various cellular processes, including cytoskeletal rearrangement, morphology changes, migration, and transcription. The typical function of Rho GTPases involves regulating actin filament formation. Neurons, with their complex processes and synapse connections, rely on cytoskeletal dynamics for structural support. Other brain cells, such as astrocytes, microglia, and oligodendrocytes, also depend on specific cytoskeletal structures to maintain their unique cellular architectures. Thus, the aberrant regulation of Rho GTPases activity can disrupt actin filaments, leading to altered cell morphology, including changes in neuronal processes and synapses, and potentially contributing to brain diseases such as AD.

摘要

淀粉样β肽(Aβ)是阿尔茨海默病(AD)的关键病因。它由淀粉样前体蛋白(APP)经β-分泌酶和γ-分泌酶切割产生。γ-分泌酶包括早老素,受多种刺激调控。Tau蛋白也被确定为AD的一个重要因素。特别是,Tau蛋白磷酸化对神经元损伤至关重要,因为磷酸化的Tau蛋白从微管上脱离,导致神经原纤维缠结的形成和微管结构的不稳定。微管的这种不稳定性会损害轴突和树突,导致神经元损伤。值得注意的是,Aβ与Tau蛋白磷酸化有关。AD中的另一个关键因素是神经炎症,主要发生在小胶质细胞中。小胶质细胞具有多种与Aβ结合的受体,尽管其主要生理功能是吞噬大脑中的碎片和病原体,但这些受体会触发炎症因子的表达和释放。核因子κB(NF-κB)的激活在神经炎症中起主要作用。此外,小胶质细胞中活性氧(ROS)的产生也促成了这种神经炎症。在小胶质细胞中,超氧化物通过烟酰胺腺嘌呤二核苷酸磷酸(NADPH)氧化酶,特别是NOX2产生。Rho GTP酶在调节各种细胞过程中起着重要作用,包括细胞骨架重排、形态变化、迁移和转录。Rho GTP酶的典型功能涉及调节肌动蛋白丝的形成。神经元具有复杂的突起和突触连接,依赖细胞骨架动力学提供结构支持。其他脑细胞,如星形胶质细胞、小胶质细胞和少突胶质细胞,也依赖特定的细胞骨架结构来维持其独特的细胞结构。因此,Rho GTP酶活性的异常调节会破坏肌动蛋白丝,导致细胞形态改变,包括神经元突起和突触的变化,并可能导致如AD等脑部疾病。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5da5/11764136/4111318d76df/cells-14-00089-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验