Svyetlichnyy Dmytro
AGH University of Krakow, Faculty of Metals Engineering and Industrial Computer Science, al. Mickiewicza 30, 30-059 Kraków, Poland.
Entropy (Basel). 2024 Dec 30;27(1):20. doi: 10.3390/e27010020.
Functionally graded materials (FGMs) show continuous variations in properties and offer unique multifunctional capabilities. This study presents a simulation of the powder bed fusion (PBF) process for FGM fabrication using a combination of Unity-based deposition and lattice Boltzmann method (LBM)-based process models. The study introduces a diffusion model that allows for the simulation of material mixtures, in particular AISI 316L austenitic steel and 18Ni maraging 300 martensitic steel. The Unity-based model simulates particle deposition with controlled distribution, incorporating variations in particle size, friction coefficient, and chamber wall rotation angles. The LBM model that simulated free-surface fluid flow, heat flow, melting, and solidification during the PBF process was extended with diffusion models for mixture fraction and concentration-dependent properties. Comparison of the results obtained in simulation with the experimental data shows that they are consistent. Future research may be connected with further verification and validation of the model, by modeling different materials. The presented model can be used for the simulation, study, modeling, and optimization of the production of functionally graded materials in PBF processes.
功能梯度材料(FGMs)的性能呈现连续变化,并具有独特的多功能能力。本研究提出了一种使用基于Unity的沉积和基于格子玻尔兹曼方法(LBM)的工艺模型相结合的粉末床熔融(PBF)工艺来制造功能梯度材料的模拟方法。该研究引入了一种扩散模型,可用于模拟材料混合物,特别是AISI 316L奥氏体钢和18Ni马氏体时效300马氏体钢。基于Unity的模型模拟了具有可控分布的颗粒沉积,考虑了颗粒尺寸、摩擦系数和腔壁旋转角度的变化。在PBF过程中模拟自由表面流体流动、热流、熔化和凝固的LBM模型通过混合物分数和浓度相关特性的扩散模型进行了扩展。模拟结果与实验数据的比较表明它们是一致的。未来的研究可能与通过对不同材料进行建模来进一步验证和确认该模型有关。所提出的模型可用于PBF工艺中功能梯度材料生产的模拟、研究、建模和优化。