Suppr超能文献

测量制造业中的复杂性:整合熵方法、编程与仿真

Measuring Complexity in Manufacturing: Integrating Entropic Methods, Programming and Simulation.

作者信息

Herrera-Vidal Germán, Coronado-Hernández Jairo R, Derpich-Contreras Ivan, Paredes Breezy P Martínez, Gatica Gustavo

机构信息

Industrial Engineering School, Universidad del Sinú, Cartagena 130001, Colombia.

Department of Productivity and Innovation, Universidad de la Costa, Barranquilla 080016, Colombia.

出版信息

Entropy (Basel). 2025 Jan 9;27(1):50. doi: 10.3390/e27010050.

Abstract

This research addresses complexity in manufacturing systems from an entropic perspective for production improvement. The main objective is to develop and validate a methodology that develops an entropic metric of complexity in an integral way in production environments, through simulation and programming techniques. The methodological proposal is composed of six stages: (i) Case study, (ii) Hypothesis formulation, (iii) Discrete event simulation, (iv) Measurement of entropic complexity by applying Shannon's information theory, (v) Entropy analysis, and (vi) Statistical analysis by ANOVA. The results confirm that factors such as production sequence and product volume significantly influence the structural complexity of the workstations, with station A being less complex (0.4154 to 0.9913 bits) compared to stations B and C, which reached up to 2.2084 bits. This analysis has shown that optimizing production scheduling can reduce bottlenecks and improve system efficiency. Furthermore, the developed methodology, validated in a case study of the metalworking sector, provides a quantitative framework that combines discrete event simulation and robust statistical analysis, offering an effective tool to anticipate and manage complexity in production. In synthesis, this research presents an innovative methodology to measure static and dynamic complexity in manufacturing systems, with practical application to improve efficiency and competitiveness in the industrial sector.

摘要

本研究从熵的角度探讨制造系统中的复杂性,以改进生产。主要目标是开发并验证一种方法,该方法通过模拟和编程技术,以整体方式在生产环境中开发复杂性的熵度量。该方法建议由六个阶段组成:(i)案例研究,(ii)假设形成,(iii)离散事件模拟,(iv)应用香农信息理论测量熵复杂性,(v)熵分析,以及(vi)方差分析的统计分析。结果证实,生产顺序和产品数量等因素对工作站的结构复杂性有显著影响,与达到2.2084比特的工作站B和C相比,工作站A的复杂性较低(0.4154至0.9913比特)。该分析表明,优化生产调度可以减少瓶颈并提高系统效率。此外,在金属加工行业的案例研究中得到验证的所开发方法,提供了一个结合离散事件模拟和稳健统计分析的定量框架,为预测和管理生产中的复杂性提供了一种有效工具。总之,本研究提出了一种创新方法来测量制造系统中的静态和动态复杂性,并在实际应用中提高工业部门的效率和竞争力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8177/11765125/c8b743af0ba5/entropy-27-00050-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验