Suppr超能文献

一种基于大感受野上下文捕捉的高效视网膜液体分割网络用于光学相干断层扫描图像

An Efficient Retinal Fluid Segmentation Network Based on Large Receptive Field Context Capture for Optical Coherence Tomography Images.

作者信息

Qi Hang, Wang Weijiang, Dang Hua, Chen Yueyang, Jia Minli, Wang Xiaohua

机构信息

School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing 100081, China.

BIT Chongqing Institute of Microelectronics and Microsystems, Chongqing 401332, China.

出版信息

Entropy (Basel). 2025 Jan 11;27(1):60. doi: 10.3390/e27010060.

Abstract

Optical Coherence Tomography (OCT) is a crucial imaging modality for diagnosing and monitoring retinal diseases. However, the accurate segmentation of fluid regions and lesions remains challenging due to noise, low contrast, and blurred edges in OCT images. Although feature modeling with wide or global receptive fields offers a feasible solution, it typically leads to significant computational overhead. To address these challenges, we propose LKMU-Lite, a lightweight U-shaped segmentation method tailored for retinal fluid segmentation. LKMU-Lite integrates a Decoupled Large Kernel Attention (DLKA) module that captures both local patterns and long-range dependencies, thereby enhancing feature representation. Additionally, it incorporates a Multi-scale Group Perception (MSGP) module that employs Dilated Convolutions with varying receptive field scales to effectively predict lesions of different shapes and sizes. Furthermore, a novel Aggregating-Shift decoder is proposed, reducing model complexity while preserving feature integrity. With only 1.02 million parameters and a computational complexity of 3.82 G FLOPs, LKMU-Lite achieves state-of-the-art performance across multiple metrics on the ICF and RETOUCH datasets, demonstrating both its efficiency and generalizability compared to existing methods.

摘要

光学相干断层扫描(OCT)是诊断和监测视网膜疾病的关键成像方式。然而,由于OCT图像中的噪声、低对比度和边缘模糊,流体区域和病变的准确分割仍然具有挑战性。尽管具有宽或全局感受野的特征建模提供了一种可行的解决方案,但它通常会导致显著的计算开销。为了应对这些挑战,我们提出了LKMU-Lite,一种专为视网膜流体分割量身定制的轻量级U形分割方法。LKMU-Lite集成了一个解耦大内核注意力(DLKA)模块,该模块同时捕获局部模式和长程依赖关系,从而增强特征表示。此外,它还包含一个多尺度组感知(MSGP)模块,该模块采用具有不同感受野尺度的扩张卷积来有效预测不同形状和大小的病变。此外,还提出了一种新颖的聚合移位解码器,在保持特征完整性的同时降低模型复杂性。LKMU-Lite仅具有102万个参数,计算复杂度为3.82 G FLOPs,在ICF和RETOUCH数据集的多个指标上实现了领先的性能,与现有方法相比,展示了其效率和通用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/de00/11764744/e45f20e4b7e1/entropy-27-00060-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验