Wu Shunnian, Lee W P Cathie, Thenuwara Hashan N, Li Xu, Wu Ping
Entropic Interface Group, Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road, Singapore 487372, Singapore.
Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), Fusionopolis Way, Innovis, Singapore 138634, Singapore.
Biomimetics (Basel). 2024 Dec 27;10(1):9. doi: 10.3390/biomimetics10010009.
Inspired by our recent success in designing CO-phobic and CO-philic domains on nano-MgO for effective CO adsorption, our ongoing efforts focus on incorporating dopants into pristine MgO to further enhance its CO adsorption capabilities. However, a clear set of guidelines for dopant selection and a holistic understanding of the underlying mechanisms is still lacking. In our investigation, we combined first-principles calculations with experimental approaches to explore the crystal and electronic structural changes in MgO doped with high-valence elements (Al, C, Si, and Ti) and their interactions with CO. Our findings unveiled two distinct mechanisms for CO capture: Ti-driven catalytic CO decomposition and CO polarization induced by Al, C, and Si. Ti doping induced outward Ti atom displacement and structural distortion, facilitating CO dissociation, whereas C doping substantially bolstered the electron donation capacity and CO adsorption energy. Pristine and C-doped MgO engaged CO through surface O atoms, while Al-, Si-, and Ti-doped MgO predominantly relied on dopant-O atom interactions. Our comprehensive research, integrating computational modeling and experimental work supported by scanning electron microscopy and thermal gravimetric analysis, confirmed the superior CO adsorption capabilities of C-doped MgO. This yielded profound insights into the mechanisms and principles that govern dopant selection and design.
受我们近期在纳米氧化镁上设计疏一氧化碳和亲一氧化碳区域以实现有效一氧化碳吸附方面取得成功的启发,我们目前的工作重点是将掺杂剂引入原始氧化镁中,以进一步提高其一氧化碳吸附能力。然而,目前仍缺乏一套明确的掺杂剂选择指南以及对潜在机制的全面理解。在我们的研究中,我们将第一性原理计算与实验方法相结合,以探索掺杂高价元素(铝、碳、硅和钛)的氧化镁的晶体和电子结构变化及其与一氧化碳的相互作用。我们的研究结果揭示了两种不同的一氧化碳捕获机制:钛驱动的催化一氧化碳分解以及铝、碳和硅引起的一氧化碳极化。钛掺杂导致钛原子向外位移和结构畸变,促进了一氧化碳的解离,而碳掺杂则显著增强了电子给予能力和一氧化碳吸附能。原始氧化镁和碳掺杂氧化镁通过表面氧原子与一氧化碳相互作用,而铝、硅和钛掺杂的氧化镁主要依赖于掺杂剂 - 氧原子相互作用。我们通过扫描电子显微镜和热重分析支持的综合计算建模和实验工作,证实了碳掺杂氧化镁具有卓越的一氧化碳吸附能力。这为指导掺杂剂选择和设计的机制及原理提供了深刻见解。