基于深度学习的单屏气 3 毫米快速自旋回波序列重建可改善腹部图像质量并缩短采集时间:一项定量分析。
Deep-Learning-Based Reconstruction of Single-Breath-Hold 3 mm HASTE Improves Abdominal Image Quality and Reduces Acquisition Time: A Quantitative Analysis.
作者信息
Kubicka Felix, Tan Qinxuan, Meyer Tom, Nickel Dominik, Weiland Elisabeth, Wagner Moritz, Marticorena Garcia Stephan Rodrigo
机构信息
Department of Radiology, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany.
MR Applications Predevelopment, Siemens Healthcare GmbH, Allee am Roethelheimpark 2, 91052 Erlangen, Germany.
出版信息
Curr Oncol. 2025 Jan 3;32(1):30. doi: 10.3390/curroncol32010030.
Breath-hold T2-weighted half-Fourier acquisition single-shot turbo spin echo (HASTE) magnetic resonance imaging (MRI) of the upper abdomen with a slice thickness below 5 mm suffers from high image noise and blurring. The purpose of this prospective study was to improve image quality and accelerate imaging acquisition by using single-breath-hold T2-weighted HASTE with deep learning (DL) reconstruction (DL-HASTE) with a 3 mm slice thickness. MRI of the upper abdomen with DL-HASTE was performed in 35 participants (5 healthy volunteers and 30 patients) at 3 Tesla. In a subgroup of five healthy participants, signal-to-noise ratio (SNR) analysis was used after DL reconstruction to identify the smallest possible layer thickness (1, 2, 3, 4, 5 mm). DL-HASTE was acquired with a 3 mm slice thickness (DL-HASTE-3 mm) in 30 patients and compared with 5 mm DL-HASTE (DL-HASTE-5 mm) and with standard HASTE (standard-HASTE-5 mm). Image quality and motion artifacts were assessed quantitatively using Laplacian variance and semi-quantitatively by two radiologists using five-point Likert scales. In the five healthy participants, DL-HASTE-3 mm was identified as the optimal slice (SNR 23.227 ± 3.901). Both DL-HASTE-3 mm and DL-HASTE-5 mm were assigned significantly higher overall image quality scores than standard-HASTE-5 mm (Laplacian variance, both < 0.001; Likert scale, < 0.001). Compared with DL-HASTE-5 mm (1.10 × 10 ± 6.93 × 10), DL-HASTE-3 mm (1.56 × 10 ± 8.69 × 10) provided a significantly higher SNR Laplacian variance ( < 0.001) and sharpness sub-scores for the intestinal tract, adrenal glands, and small anatomic structures (bile ducts, pancreatic ducts, and vessels; < 0.05). Lesion detectability was rated excellent for both DL-HASTE-3 mm and DL-HASTE-5 mm (both: 5 [IQR4-5]) and was assigned higher scores than standard-HASTE-5 mm (4 [IQR4-5]; < 0.001). DL-HASTE reduced the acquisition time by 63-69% compared with standard-HASTE-5 mm ( < 0.001). : DL-HASTE is a robust abdominal MRI technique that improves image quality while at the same time reducing acquisition time compared with the routine clinical HASTE sequence. Using ultra-thin DL-HASTE-3 mm results in an even greater improvement with a similar SNR.
屏气T2加权半傅里叶采集单次激发快速自旋回波(HASTE)磁共振成像(MRI)用于上腹部检查时,若层厚小于5mm,会出现高图像噪声和模糊现象。本前瞻性研究的目的是通过使用层厚为3mm的屏气T2加权HASTE并结合深度学习(DL)重建(DL-HASTE)来提高图像质量并加快成像采集速度。35名参与者(5名健康志愿者和30名患者)在3特斯拉场强下接受了上腹部的DL-HASTE MRI检查。在五名健康参与者的亚组中,DL重建后进行信噪比(SNR)分析,以确定最小可能的层厚(1、2、3、4、5mm)。30名患者采用3mm层厚采集DL-HASTE(DL-HASTE-3mm),并与5mm的DL-HASTE(DL-HASTE-5mm)以及标准HASTE(标准-HASTE-5mm)进行比较。使用拉普拉斯方差定量评估图像质量和运动伪影,并由两名放射科医生使用五点李克特量表进行半定量评估。在五名健康参与者中,DL-HASTE-3mm被确定为最佳层厚(SNR为23.227±3.901)。DL-HASTE-3mm和DL-HASTE-5mm的总体图像质量得分均显著高于标准-HASTE-5mm(拉普拉斯方差,均<0.001;李克特量表,<0.
相似文献
本文引用的文献
Cancers (Basel). 2023-1-18
Insights Imaging. 2021-8-10