Suppr超能文献

使用脑电图量化电极对之间的通信对阿尔茨海默病和额颞叶痴呆进行分类

Classification of Alzheimer's Disease and Frontotemporal Dementia Using Electroencephalography to Quantify Communication between Electrode Pairs.

作者信息

Ma Yuan, Bland Jeffrey Keith Spaneas, Fujinami Tsutomu

机构信息

Development Division, FOVE Inc., Tokyo 107-0061, Japan.

School of Knowledge Science, Japan Advanced Institute of Science and Technology, Nomi 923-1292, Japan.

出版信息

Diagnostics (Basel). 2024 Sep 30;14(19):2189. doi: 10.3390/diagnostics14192189.

Abstract

Accurate diagnosis of dementia subtypes is crucial for optimizing treatment planning and enhancing caregiving strategies. To date, the accuracy of classifying Alzheimer's disease (AD) and frontotemporal dementia (FTD) using electroencephalogram (EEG) data has been lower than that of distinguishing individuals with these diseases from healthy elderly controls (HCs). This limitation has impeded the feasibility of a cost-effective differential diagnosis for the two subtypes in clinical settings. This study addressed this issue by quantifying communication between electrode pairs in EEG data, along with demographic information, as features to train machine learning (support vector machine) models. Our focus was on refining the feature set specifically for AD-FTD classification. Using our initial feature set, we achieved classification accuracies of 76.9% for AD-HC, 90.4% for FTD-HC, and 91.5% for AD-FTD. Notably, feature importance analyses revealed that the features influencing AD-HC classification are unnecessary for distinguishing between AD and FTD. Eliminating these unnecessary features improved the classification accuracy of AD-FTD to 96.6%. We concluded that communication between electrode pairs specifically involved in the neurological pathology of FTD, but not AD, enables highly accurate EEG-based AD-FTD classification.

摘要

准确诊断痴呆亚型对于优化治疗方案和加强护理策略至关重要。迄今为止,利用脑电图(EEG)数据对阿尔茨海默病(AD)和额颞叶痴呆(FTD)进行分类的准确性一直低于将患有这些疾病的个体与健康老年对照(HC)区分开来的准确性。这一局限性阻碍了在临床环境中对这两种亚型进行具有成本效益的鉴别诊断的可行性。本研究通过将EEG数据中电极对之间的连通性以及人口统计学信息作为特征来训练机器学习(支持向量机)模型,解决了这一问题。我们的重点是专门为AD - FTD分类优化特征集。使用我们的初始特征集,我们在AD - HC分类上达到了76.9%的准确率,在FTD - HC分类上达到了90.4%的准确率,在AD - FTD分类上达到了91.5%的准确率。值得注意的是,特征重要性分析表明,影响AD - HC分类的特征对于区分AD和FTD并非必要。去除这些不必要的特征后,AD - FTD的分类准确率提高到了96.6%。我们得出结论,专门参与FTD而非AD神经病理学的电极对之间的连通性能够实现基于EEG的高度准确的AD - FTD分类。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7608/11475635/c90362bd66c1/diagnostics-14-02189-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验