Cino Loris, Distante Cosimo, Martella Alessandro, Mazzeo Pier Luigi
Dipartimento di Ingegneria Informatica, Automatica, e Gestionale "Antonio Ruberti", Sapienza Università di Roma, Via Ariosto, 25, 00185 Roma, Italy.
Istituto di Scienze Applicate e Sistemi Intelligenti (ISASI), Consiglio Nazionale delle Ricerche (CNR), DHITECH, Campus Università del Salento, Via Monteroni s.n., 73100 Lecce, Italy.
J Imaging. 2025 Jan 9;11(1):15. doi: 10.3390/jimaging11010015.
Despite significant advancements in the automatic classification of skin lesions using artificial intelligence (AI) algorithms, skepticism among physicians persists. This reluctance is primarily due to the lack of transparency and explainability inherent in these models, which hinders their widespread acceptance in clinical settings. The primary objective of this study is to develop a highly accurate AI-based algorithm for skin lesion classification that also provides visual explanations to foster trust and confidence in these novel diagnostic tools. By improving transparency, the study seeks to contribute to earlier and more reliable diagnoses. Additionally, the research investigates the impact of Test Time Augmentation (TTA) on the performance of six Convolutional Neural Network (CNN) architectures, which include models from the EfficientNet, ResNet (Residual Network), and ResNeXt (an enhanced variant of ResNet) families. To improve the interpretability of the models' decision-making processes, techniques such as t-distributed Stochastic Neighbor Embedding (t-SNE) and Gradient-weighted Class Activation Mapping (Grad-CAM) are employed. t-SNE is utilized to visualize the high-dimensional latent features of the CNNs in a two-dimensional space, providing insights into how the models group different skin lesion classes. Grad-CAM is used to generate heatmaps that highlight the regions of input images that influence the model's predictions. Our findings reveal that Test Time Augmentation enhances the balanced multi-class accuracy of CNN models by up to 0.3%, achieving a balanced accuracy rate of 97.58% on the International Skin Imaging Collaboration (ISIC 2019) dataset. This performance is comparable to, or marginally better than, more complex approaches such as Vision Transformers (ViTs), demonstrating the efficacy of our methodology.
尽管在使用人工智能(AI)算法对皮肤病变进行自动分类方面取得了重大进展,但医生们仍然持怀疑态度。这种不情愿主要是由于这些模型固有的缺乏透明度和可解释性,这阻碍了它们在临床环境中的广泛接受。本研究的主要目标是开发一种基于AI的高精度皮肤病变分类算法,该算法还能提供可视化解释,以增强对这些新型诊断工具的信任和信心。通过提高透明度,该研究旨在促进更早、更可靠的诊断。此外,该研究还调查了测试时间增强(TTA)对六种卷积神经网络(CNN)架构性能的影响,这些架构包括来自EfficientNet、ResNet(残差网络)和ResNeXt(ResNet的增强变体)家族的模型。为了提高模型决策过程的可解释性,采用了诸如t分布随机邻域嵌入(t-SNE)和梯度加权类激活映射(Grad-CAM)等技术。t-SNE用于在二维空间中可视化CNN的高维潜在特征,深入了解模型如何对不同的皮肤病变类别进行分组。Grad-CAM用于生成热图,突出显示影响模型预测的输入图像区域。我们的研究结果表明,测试时间增强将CNN模型的平衡多类准确率提高了高达0.3%,在国际皮肤成像协作组织(ISIC 2019)数据集上实现了97.58%的平衡准确率。这一性能与视觉Transformer(ViT)等更复杂的方法相当,或略优于它们,证明了我们方法的有效性。