Suppr超能文献

利用 EfficientNet-B7 和可解释 AI 技术革新乳腺超声诊断。

Revolutionizing breast ultrasound diagnostics with EfficientNet-B7 and Explainable AI.

机构信息

Department of Information Technology, SRM Institute of Science and Technology, Ramapuram, Chennai, India.

Department of Computer Science and Engineering, Faculty of Engineering, Karpagam Academy of Higher Education(Deemed to be University, Coimbatore, India.

出版信息

BMC Med Imaging. 2024 Sep 2;24(1):230. doi: 10.1186/s12880-024-01404-3.

Abstract

Breast cancer is a leading cause of mortality among women globally, necessitating precise classification of breast ultrasound images for early diagnosis and treatment. Traditional methods using CNN architectures such as VGG, ResNet, and DenseNet, though somewhat effective, often struggle with class imbalances and subtle texture variations, leading to reduced accuracy for minority classes such as malignant tumors. To address these issues, we propose a methodology that leverages EfficientNet-B7, a scalable CNN architecture, combined with advanced data augmentation techniques to enhance minority class representation and improve model robustness. Our approach involves fine-tuning EfficientNet-B7 on the BUSI dataset, implementing RandomHorizontalFlip, RandomRotation, and ColorJitter to balance the dataset and improve model robustness. The training process includes early stopping to prevent overfitting and optimize performance metrics. Additionally, we integrate Explainable AI (XAI) techniques, such as Grad-CAM, to enhance the interpretability and transparency of the model's predictions, providing visual and quantitative insights into the features and regions of ultrasound images influencing classification outcomes. Our model achieves a classification accuracy of 99.14%, significantly outperforming existing CNN-based approaches in breast ultrasound image classification. The incorporation of XAI techniques enhances our understanding of the model's decision-making process, thereby increasing its reliability and facilitating clinical adoption. This comprehensive framework offers a robust and interpretable tool for the early detection and diagnosis of breast cancer, advancing the capabilities of automated diagnostic systems and supporting clinical decision-making processes.

摘要

乳腺癌是全球女性死亡的主要原因之一,因此需要对乳腺超声图像进行精确分类,以便进行早期诊断和治疗。传统的方法使用 CNN 架构,如 VGG、ResNet 和 DenseNet,虽然在某种程度上是有效的,但它们经常难以处理类不平衡和细微纹理变化的问题,导致对恶性肿瘤等少数类别的准确性降低。为了解决这些问题,我们提出了一种利用高效的 CNN 架构 EfficientNet-B7,并结合先进的数据增强技术来增强少数类别的表示和提高模型鲁棒性的方法。我们的方法包括在 BUSI 数据集上对 EfficientNet-B7 进行微调,实施随机水平翻转、随机旋转和颜色抖动,以平衡数据集并提高模型鲁棒性。训练过程包括提前停止以防止过拟合并优化性能指标。此外,我们还集成了可解释人工智能 (XAI) 技术,如 Grad-CAM,以增强模型预测的可解释性和透明度,提供对影响分类结果的超声图像特征和区域的可视化和定量见解。我们的模型在乳腺超声图像分类方面实现了 99.14%的分类准确率,明显优于现有的基于 CNN 的方法。XAI 技术的引入增强了我们对模型决策过程的理解,从而提高了模型的可靠性,并促进了临床应用。这个综合框架为乳腺癌的早期检测和诊断提供了一个强大且可解释的工具,提高了自动诊断系统的能力,并支持临床决策过程。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/767a/11367906/d4b3247aa857/12880_2024_1404_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验