Kandhro Irfan Ali, Manickam Selvakumar, Fatima Kanwal, Uddin Mueen, Malik Urooj, Naz Anum, Dandoush Abdulhalim
Department of Computer Science, Sindh Madressatul Islam University, Karachi, 74000, Pakistan.
National Advanced IPv6 Centre (NAv6), Universiti Sains Malaysia, Gelugor, Penang, 11800, Malaysia.
Heliyon. 2024 May 17;10(10):e31488. doi: 10.1016/j.heliyon.2024.e31488. eCollection 2024 May 30.
Skin cancer is a pervasive and potentially life-threatening disease. Early detection plays a crucial role in improving patient outcomes. Machine learning (ML) techniques, particularly when combined with pre-trained deep learning models, have shown promise in enhancing the accuracy of skin cancer detection. In this paper, we enhanced the VGG19 pre-trained model with max pooling and dense layer for the prediction of skin cancer. Moreover, we also explored the pre-trained models such as Visual Geometry Group 19 (VGG19), Residual Network 152 version 2 (ResNet152v2), Inception-Residual Network version 2 (InceptionResNetV2), Dense Convolutional Network 201 (DenseNet201), Residual Network 50 (ResNet50), Inception version 3 (InceptionV3), For training, skin lesions dataset is used with malignant and benign cases. The models extract features and divide skin lesions into two categories: malignant and benign. The features are then fed into machine learning methods, including Linear Support Vector Machine (SVM), k-Nearest Neighbors (KNN), Decision Tree (DT), Logistic Regression (LR) and Support Vector Machine (SVM), our results demonstrate that combining E-VGG19 model with traditional classifiers significantly improves the overall classification accuracy for skin cancer detection and classification. Moreover, we have also compared the performance of baseline classifiers and pre-trained models with metrics (recall, F1 score, precision, sensitivity, and accuracy). The experiment results provide valuable insights into the effectiveness of various models and classifiers for accurate and efficient skin cancer detection. This research contributes to the ongoing efforts to create automated technologies for detecting skin cancer that can help healthcare professionals and individuals identify potential skin cancer cases at an early stage, ultimately leading to more timely and effective treatments.
皮肤癌是一种普遍存在且可能危及生命的疾病。早期检测在改善患者预后方面起着至关重要的作用。机器学习(ML)技术,特别是与预训练的深度学习模型相结合时,在提高皮肤癌检测的准确性方面显示出了前景。在本文中,我们使用最大池化和密集层增强了预训练的VGG19模型,用于皮肤癌的预测。此外,我们还探索了诸如视觉几何组19(VGG19)、残差网络152版本2(ResNet152v2)、Inception-残差网络版本2(InceptionResNetV2)、密集卷积网络201(DenseNet201)、残差网络50(ResNet50)、Inception版本3(InceptionV3)等预训练模型。为了进行训练,使用了包含恶性和良性病例的皮肤病变数据集。这些模型提取特征并将皮肤病变分为两类:恶性和良性。然后将这些特征输入到机器学习方法中,包括线性支持向量机(SVM)、k近邻(KNN)、决策树(DT)、逻辑回归(LR)和支持向量机(SVM),我们的结果表明,将增强的VGG19模型与传统分类器相结合可显著提高皮肤癌检测和分类的整体准确率。此外,我们还使用召回率、F1分数、精确率、敏感度和准确率等指标比较了基线分类器和预训练模型的性能。实验结果为各种模型和分类器在准确高效的皮肤癌检测方面的有效性提供了有价值的见解。这项研究有助于持续努力创建用于检测皮肤癌的自动化技术,这可以帮助医疗保健专业人员和个人在早期识别潜在的皮肤癌病例,最终实现更及时有效的治疗。