Ferrante Matteo, De Marco Paolo, Rampado Osvaldo, Gianusso Laura, Origgi Daniela
Medical Physics Unit, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy.
Medical Physics Unit, A.O.U. Città della Salute e della Scienza di Torino, 10126 Turin, Italy.
Tomography. 2025 Jan 2;11(1):2. doi: 10.3390/tomography11010002.
Computed tomography scans are widely used in everyday medical practice due to speed, image reliability, and detectability of a wide range of pathologies. Each scan exposes the patient to a radiation dose, and performing a fast estimation of the effective dose (E) is an important step for radiological safety. The aim of this work is to estimate E from patient and CT acquisition parameters in the absence of a dose-tracking software exploiting machine learning.
In total, 69,037 CT acquisitions were collected with the dose-tracking software (DTS) available at our institution. E calculated by DTS was chosen as the target value for prediction. Different machine learning algorithms were selected, optimizing parameters to achieve the best performance for each algorithm. Effective dose was also estimated using DLP and k-factors, and with multiple linear regression. Mean absolute error (MAE, mean absolute percentage error (MAPE), and R were used to evaluate predictions in the test set and in an external dataset of 3800 acquisitions.
The random forest regressor (MAE: 0.416 mSv; MAPE: 7%; and R: 0.98) showed best performances over the neural network and the support vector machine. However, all three machine learning algorithms outperformed effective dose estimation using k-factors (MAE: 2.06; MAPE: 26%) or multiple linear regression (MAE: 0.98; MAPE: 44.4%). The random forest regressor on the external dataset showed an MAE of 0.215 mSv and an MAPE of 7.1%.
Our work demonstrated that machine learning models trained with data calculated by a dose-tracking software can provide good estimates of the effective dose just from patient and scanner parameters, without the need for a Monte Carlo approach.
计算机断层扫描(CT)因其速度快、图像可靠性高以及能检测多种病变,在日常医疗实践中被广泛应用。每次扫描都会使患者受到辐射剂量,快速估算有效剂量(E)是放射安全的重要一步。本研究的目的是在没有剂量跟踪软件的情况下,利用机器学习从患者和CT采集参数估算E。
我们机构共收集了69037次使用剂量跟踪软件(DTS)的CT采集数据。将DTS计算得出的E选为预测的目标值。选择了不同的机器学习算法,并对参数进行优化,以使每种算法达到最佳性能。还使用剂量长度乘积(DLP)和k因子以及多元线性回归估算有效剂量。使用平均绝对误差(MAE)、平均绝对百分比误差(MAPE)和R来评估测试集以及3800次采集的外部数据集中的预测结果。
随机森林回归器(MAE:0.416 mSv;MAPE:7%;R:0.98)在神经网络和支持向量机中表现最佳。然而,这三种机器学习算法的性能均优于使用k因子(MAE:2.06;MAPE:26%)或多元线性回归(MAE:0.98;MAPE:44.4%)估算有效剂量的方法。外部数据集中的随机森林回归器的MAE为0.215 mSv,MAPE为7.1%。
我们的研究表明,用剂量跟踪软件计算的数据训练的机器学习模型仅根据患者和扫描仪参数就能很好地估算有效剂量,无需采用蒙特卡洛方法。