Suppr超能文献

基于机器学习的 CT 辐射剂量指标估算患者体重。

Machine learning-based estimation of patient body weight from radiation dose metrics in computed tomography.

机构信息

Department of Radiology, Toyohashi Municipal Hospital, Toyohashi, Aichi, Japan.

Department of Quantum Medical Technology, Institute of Medical, Pharmaceutical and Health, Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan.

出版信息

J Appl Clin Med Phys. 2024 Sep;25(9):e14467. doi: 10.1002/acm2.14467. Epub 2024 Jul 23.

Abstract

PURPOSE

Currently, precise patient body weight (BW) at the time of diagnostic imaging cannot always be used for radiation dose management. Various methods have been explored to address this issue, including the application of deep learning to medical imaging and BW estimation using scan parameters. This study develops and evaluates machine learning-based BW prediction models using 11 features related to radiation dose obtained from computed tomography (CT) scans.

METHODS

A dataset was obtained from 3996 patients who underwent positron emission tomography CT scans, and training and test sets were established. Dose metrics and descriptive data were automatically calculated from the CT images or obtained from Digital Imaging and Communications in Medicine metadata. Seven machine-learning models and three simple regression models were employed to predict BW using features such as effective diameter (ED), water equivalent diameter (WED), and mean milliampere-seconds. The mean absolute error (MAE) and correlation coefficient between the estimated BW and the actual BW obtained from each BW prediction model were calculated.

RESULTS

Our results found that the highest accuracy was obtained using a light gradient-boosting machine model, which had an MAE of 1.99 kg and a strong positive correlation between estimated and actual BW (ρ = 0.972). The model demonstrated significant predictive power, with 73% of patients falling within a ±5% error range. WED emerged as the most relevant dose metric for BW estimation, followed by ED and sex.

CONCLUSIONS

The proposed machine-learning approach is superior to existing methods, with high accuracy and applicability to radiation dose management. The model's reliance on universal dose metrics that are accessible through radiation dose management software enhances its practicality. In conclusion, this study presents a robust approach for BW estimation based on CT imaging that can potentially improve radiation dose management practices in clinical settings.

摘要

目的

目前,在进行诊断性影像学检查时,无法始终准确获知患者的实际体重(BW),因此需要寻找其他方法来解决这一问题。已经有研究探索了多种方法,包括将深度学习应用于医学影像学以及利用扫描参数来估计 BW。本研究开发并评估了基于机器学习的 BW 预测模型,使用了从 CT 扫描中获得的 11 个与辐射剂量相关的特征。

方法

从 3996 例行正电子发射断层扫描 CT 检查的患者中获取数据集,并建立了训练集和测试集。剂量指标和描述性数据从 CT 图像中自动计算或从 DICOM 元数据中获得。使用有效直径(ED)、水等效直径(WED)和平均毫安秒等特征,采用 7 种机器学习模型和 3 种简单回归模型来预测 BW。计算了每个 BW 预测模型的估计 BW 与实际 BW 之间的平均绝对误差(MAE)和相关系数。

结果

结果发现,使用轻量级梯度提升机模型的准确性最高,其 MAE 为 1.99kg,估计 BW 与实际 BW 之间具有很强的正相关(ρ=0.972)。该模型具有显著的预测能力,73%的患者的误差在±5%范围内。在 BW 估计中,WED 是最相关的剂量指标,其次是 ED 和性别。

结论

与现有方法相比,所提出的机器学习方法具有更高的准确性和适用性,可用于辐射剂量管理。该模型依赖于可通过辐射剂量管理软件获得的通用剂量指标,提高了其实用性。总之,本研究提出了一种基于 CT 成像的 BW 估计的可靠方法,有望改善临床实践中的辐射剂量管理。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/34b0/11492421/467d00e41a06/ACM2-25-e14467-g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验