Suppr超能文献

Performance of Fluid Infusion Systems in the Changing Atmospheric Pressures Encountered in Aviation.

作者信息

Fan Ka Siu, Paterson Megan, Shojaee-Moradie Fariba, Manoli Antonios, Edwards Victoria, Lee Vivienne, Hutchison Ewan, Gifford Robert M, Parsons Iain T, Koehler Gerd, Mathieu Chantal, Mader Julia K, King Bruce R, Russell-Jones David, Consortium Easa

出版信息

Aerosp Med Hum Perform. 2025 Jan;96(1):4-11. doi: 10.3357/AMHP.6477.2024.

Abstract

INTRODUCTION

With the increasing use of aeromedical transport for critically ill patients, it is essential to understand the impact of pressure changes on drug infusion delivery systems. As airplanes ascend and descend, gases/bubbles are released from solutions when ambient pressure decreases and dissolves when pressure increases. This may affect mechanical fluid delivery systems and cause clinically significant changes, especially within a critical care setting. We aimed to evaluate the impact of pressure changes on volumetric pumps and syringe drivers.

METHODS

An in vitro study of six volumetric pumps and eight syringe drivers was conducted in a hypobaric chamber to mimic pressure changes during flights. Infusion devices were set to deliver water at 0.2 ml ⋅ h-1 and infused volumes were measured. There were 15 open-ended syringes also studied.

RESULTS

During ascent, syringe drivers and volumetric pumps over-delivered 173 µL and 38 µL of fluid. During descent, syringe drivers under-delivered by 166 µL, whereas volumetric pumps under-delivered by 9 µL. Syringe drivers experienced statistically significant changes in fluid delivery during both ascent and descent. In volumetric pumps, only the descent phase infusion differed significantly from other phases. The volume of fluid expansion is dependent on volume and the mechanical properties of the fluid.

DISCUSSION

Decreasing ambient pressure causes bubble formation, which displaces fluid, and increasing ambient pressure causes bubble reabsorption in mechanical infusion devices. Hence, atmospheric pressure changes during air travel may alter fluid delivery from medical fluid delivery systems and affect critically ill patients who require both aeromedical evacuation and accurate infusion of drugs. Fan KS, Paterson M, Shojaee-Moradie F, Manoli A, Edwards V, Lee V, Hutchison E, Gifford RM, Parsons IT, Koehler G, Mathieu C, Mader JK, King BR, Russell-Jones D; EASA Consortium. Performance of fluid infusion systems in the changing atmospheric pressures encountered in aviation. Aerosp Med Hum Perform. 2025; 96(1):4-11.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验