Suppr超能文献

基于VGG16模型的卷积神经网络方法进行法医性别分类:准确率、精确率和敏感度。

Forensic sex classification by convolutional neural network approach by VGG16 model: accuracy, precision and sensitivity.

作者信息

Pereira Cristiana Palmela, Correia Mariana, Augusto Diana, Coutinho Francisco, Salvado Silva Francisco, Santos Rui

机构信息

Centro de Estatística e Aplicações Universidade de Lisbao, CEAUL, Faculdade de Ciências da Universidade de Lisboa no Bloco C6 - Piso 4, Lisboa, 1749-016, Portugal.

Grupo FORENSEMED, Centro UICOB, Faculdade de Medicina Dentária da Universidade de Lisboa. Cidade Universitária, Rua Professora Teresa Ambrósio, Lisboa, 1600-277, Portugal.

出版信息

Int J Legal Med. 2025 May;139(3):1381-1393. doi: 10.1007/s00414-025-03416-2. Epub 2025 Jan 24.

Abstract

INTRODUCTION

In the reconstructive phase of medico-legal human identification, the sex estimation is crucial in the reconstruction of the biological profile and can be applied both in identifying victims of mass disasters and in the autopsy room. Due to the inherent subjectivity associated with traditional methods, artificial intelligence, specifically, convolutional neural networks (CNN) may present a competitive option.

OBJECTIVES

This study evaluates the reliability of VGG16 model as an accurate forensic sex prediction algorithm and its performance using orthopantomography (OPGs).

MATERIALS AND METHODS

This study included 1050 OPGs from patients at the Santa Maria Local Health Unit Stomatology Department. Using Python, the OPGs were pre-processed, resized and similar copies were created using data augmentation methods. The model was evaluated for precision, sensitivity, F1-score and accuracy, and heatmaps were created.

RESULTS AND DISCUSSION

The training revealed a discrepancy between the validation and training loss values. In the general test, the model showed a general balance between sexes, with F1-scores of 0.89. In the test by age group, contrary to expectations, the model was most accurate in the 16-20 age group (90%). Apart from the mandibular symphysis, analysis of the heatmaps showed that the model did not focus on anatomically relevant areas, possibly due to the lack of application of image extraction techniques.

CONCLUSIONS

The results indicate that CNNs are accurate in classifying human remains based on the generic factor sex for medico-legal identification, achieving an overall accuracy of 89%. However, further research is necessary to enhance the models' performance.

摘要

引言

在法医学人体身份识别的重建阶段,性别估计对于生物特征剖析的重建至关重要,可应用于大规模灾难受害者的身份识别以及尸检室。由于传统方法存在固有的主观性,人工智能,特别是卷积神经网络(CNN)可能是一个有竞争力的选择。

目的

本研究评估VGG16模型作为一种准确的法医性别预测算法的可靠性及其使用曲面断层片(OPG)的性能。

材料与方法

本研究纳入了圣玛丽亚地方卫生单位口腔科患者的1050张OPG。使用Python对OPG进行预处理、调整大小,并使用数据增强方法创建相似副本。对模型的精度、敏感性、F1分数和准确性进行评估,并创建热图。

结果与讨论

训练显示验证损失值和训练损失值之间存在差异。在总体测试中,模型在性别之间表现出总体平衡,F1分数为0.89。在按年龄组进行的测试中,与预期相反,模型在16 - 20岁年龄组中最准确(90%)。除了下颌联合处,热图分析表明该模型没有关注解剖学相关区域,这可能是由于缺乏图像提取技术的应用。

结论

结果表明,对于法医学鉴定,基于性别这一通用因素,卷积神经网络在对人类遗骸进行分类方面是准确的,总体准确率达到89%。然而,需要进一步研究以提高模型的性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验