Suppr超能文献

将感觉衰减建模为跨两个数据集的贝叶斯因果推理。

Modelling sensory attenuation as Bayesian causal inference across two datasets.

作者信息

Eckert Anna-Lena, Fuehrer Elena, Schmitter Christina, Straube Benjamin, Fiehler Katja, Endres Dominik

机构信息

Department of Psychology, Theoretical Cognitive Science Group, Philipps-Universität Marburg, Marburg, Germany.

Department of Psychology and Sport Science, Experimental Psychology Group, Justus-Liebig-Universität Gießen, Gießen, Germany.

出版信息

PLoS One. 2025 Jan 24;20(1):e0317924. doi: 10.1371/journal.pone.0317924. eCollection 2025.

Abstract

INTRODUCTION

To interact with the environment, it is crucial to distinguish between sensory information that is externally generated and inputs that are self-generated. The sensory consequences of one's own movements tend to induce attenuated behavioral- and neural responses compared to externally generated inputs. We propose a computational model of sensory attenuation (SA) based on Bayesian Causal Inference, where SA occurs when an internal cause for sensory information is inferred.

METHODS

Experiment 1investigates sensory attenuation during a stroking movement. Tactile stimuli on the stroking finger were suppressed, especially when they were predictable. Experiment 2 showed impaired delay detection between an arm movement and a video of the movement when participants were moving vs. when their arm was moved passively. We reconsider these results from the perspective of Bayesian Causal Inference (BCI). Using a hierarchical Markov Model (HMM) and variational message passing, we first qualitatively capture patterns of task behavior and sensory attenuation in simulations. Next, we identify participant-specific model parameters for both experiments using optimization.

RESULTS

A sequential BCI model is well equipped to capture empirical patterns of SA across both datasets. Using participant-specific optimized model parameters, we find a good agreement between data and model predictions, with the model capturing both tactile detections in Experiment 1 and delay detections in Experiment 2.

DISCUSSION

BCI is an appropriate framework to model sensory attenuation in humans. Computational models of sensory attenuation may help to bridge the gap across different sensory modalities and experimental paradigms and may contribute towards an improved description and understanding of deficits in specific patient groups (e.g. schizophrenia).

摘要

引言

为了与环境进行交互,区分外部产生的感官信息和自身产生的输入至关重要。与外部产生的输入相比,自身运动的感官后果往往会引发减弱的行为和神经反应。我们基于贝叶斯因果推理提出了一种感官衰减(SA)的计算模型,其中当推断出感官信息的内部原因时就会发生SA。

方法

实验1研究了抚摸动作过程中的感官衰减。抚摸手指上的触觉刺激被抑制,尤其是当它们可预测时。实验2表明,当参与者主动移动手臂与被动移动手臂时,手臂运动与该运动视频之间的延迟检测受损。我们从贝叶斯因果推理(BCI)的角度重新审视这些结果。使用分层马尔可夫模型(HMM)和变分消息传递,我们首先在模拟中定性地捕捉任务行为和感官衰减的模式。接下来,我们通过优化为两个实验确定参与者特定的模型参数。

结果

一个顺序BCI模型能够很好地捕捉两个数据集中SA的实证模式。使用参与者特定的优化模型参数,我们发现数据与模型预测之间有很好的一致性,该模型捕捉了实验1中的触觉检测和实验2中的延迟检测。

讨论

BCI是模拟人类感官衰减的合适框架。感官衰减的计算模型可能有助于弥合不同感官模态和实验范式之间的差距,并可能有助于更好地描述和理解特定患者群体(如精神分裂症患者)的缺陷。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/09dd/11761661/9c7a6848044b/pone.0317924.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验