Li Lei, Smith Hannah, Lyu Yilin, Camps Julia, Qian Shuang, Rodriguez Blanca, Banerjee Abhirup, Grau Vicente
School of Electronics & Computer Science, University of Southampton, Southampton, UK; Department of Engineering Science, University of Oxford, Oxford, UK; Department of Biomedical Engineering, National University of Singapore, Singapore.
Department of Computer Science, University of Oxford, Oxford, UK.
Med Image Anal. 2025 Apr;101:103472. doi: 10.1016/j.media.2025.103472. Epub 2025 Jan 21.
Cardiac digital twins (CDTs) offer personalized in-silico cardiac representations for the inference of multi-scale properties tied to cardiac mechanisms. The creation of CDTs requires precise information about the electrode position on the torso, especially for the personalized electrocardiogram (ECG) calibration. However, current studies commonly rely on additional acquisition of torso imaging and manual/semi-automatic methods for ECG electrode localization. In this study, we propose a novel and efficient topology-informed model to fully automatically extract personalized ECG standard electrode locations from 2D clinically standard cardiac MRIs. Specifically, we obtain the sparse torso contours from the cardiac MRIs and then localize the standard electrodes of 12-lead ECG from the contours. Cardiac MRIs aim at imaging of the heart instead of the torso, leading to incomplete torso geometry within the imaging. To tackle the missing topology, we incorporate the electrodes as a subset of the keypoints, which can be explicitly aligned with the 3D torso topology. The experimental results demonstrate that the proposed model outperforms the time-consuming conventional model projection-based method in terms of accuracy (Euclidean distance: 1.24±0.293 cm vs. 1.48±0.362 cm) and efficiency (2 s vs. 30-35 min). We further demonstrate the effectiveness of using the detected electrodes for in-silico ECG simulation, highlighting their potential for creating accurate and efficient CDT models. The code is available at https://github.com/lileitech/12lead_ECG_electrode_localizer.
心脏数字孪生(CDTs)提供个性化的心脏计算机模拟表示,用于推断与心脏机制相关的多尺度特性。创建CDTs需要有关躯干上电极位置的精确信息,特别是用于个性化心电图(ECG)校准。然而,目前的研究通常依赖于额外采集躯干成像以及使用手动/半自动方法进行ECG电极定位。在本研究中,我们提出了一种新颖且高效的拓扑信息模型,以从二维临床标准心脏磁共振成像(MRI)中完全自动提取个性化ECG标准电极位置。具体而言,我们从心脏MRI中获取稀疏的躯干轮廓,然后从这些轮廓中定位12导联ECG的标准电极。心脏MRI的目的是对心脏进行成像而非躯干,导致成像内躯干几何形状不完整。为了解决缺失的拓扑问题,我们将电极作为关键点的一个子集纳入,这些关键点可以与三维躯干拓扑明确对齐。实验结果表明,所提出的模型在准确性(欧几里得距离:1.24±0.293厘米对1.48±0.362厘米)和效率(2秒对30 - 35分钟)方面优于耗时的传统基于模型投影的方法。我们进一步证明了使用检测到的电极进行计算机模拟ECG的有效性,突出了它们在创建准确高效的CDT模型方面的潜力。代码可在https://github.com/lileitech/12lead_ECG_electrode_localizer获取。