Joshi Deepak Chandra, Chavan Mayuri Bapu, Gurow Kajal, Gupta Madhu, Dhaliwal Jagjit Singh, Ming Long Chiau
Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandar Sindri, Dist., Ajmer, Rajasthan, India.
TMV's Lokmanya Tilak Institute of Pharmaceutical Sciences, Pune, Maharashtra, India.
Biomed Pharmacother. 2025 Feb;183:117827. doi: 10.1016/j.biopha.2025.117827. Epub 2025 Jan 23.
Huntington's disease (HD) is a progressive, autosomal dominant neurodegenerative disorder characterized by cognitive decline, motor dysfunction, and psychiatric disturbances. A common feature of neurodegenerative disorders is mitochondrial dysfunction, which affects the brain's sensitivity to oxidative damage and its high oxygen demand. This dysfunction may plays a significant role in the pathogenesis of Huntington's disease. HD is caused by a CAG repeat expansion in the huntingtin gene, which leads to the production of a toxic mutant huntingtin (mHTT) protein. This disruption in mitochondrial function compromises energy metabolism and increases oxidative stress, resulting in mitochondrial DNA abnormalities, impaired calcium homeostasis, and altered mitochondrial dynamics. These effects ultimately may contribute to neuronal dysfunction and cell death, underscoring the importance of targeting mitochondrial function in developing therapeutic strategies for HD. This review discusses the mechanistic role of mitochondrial dysfunction in Huntington's disease. Mitochondrial dysfunction is a crucial factor in HD, making mitochondrial-targeted therapies a promising approach for treatment. We explore therapies that address bioenergy deficits, antioxidants that reduce reactive oxygen species, calcium modulators that restore calcium homeostasis, and treatments that enhance mitochondrial dynamics to rejuvenate mitochondrial function. We also highlight innovative treatment approaches such as gene editing and stem cell therapy, which offer hope for more personalized strategies. In conclusion, understanding mitochondrial dysfunction in Huntington's disease may guide potential treatment strategies. Targeting this dysfunction may help to slow disease progression and enhance the quality of life for individuals affected by Huntington's disease.
亨廷顿舞蹈症(HD)是一种进行性常染色体显性神经退行性疾病,其特征为认知衰退、运动功能障碍和精神障碍。神经退行性疾病的一个共同特征是线粒体功能障碍,这会影响大脑对氧化损伤的敏感性及其对高氧的需求。这种功能障碍可能在亨廷顿舞蹈症的发病机制中起重要作用。HD是由亨廷顿基因中的CAG重复序列扩增引起的,这会导致产生有毒的突变亨廷顿(mHTT)蛋白。线粒体功能的这种破坏会损害能量代谢并增加氧化应激,导致线粒体DNA异常、钙稳态受损以及线粒体动力学改变。这些影响最终可能导致神经元功能障碍和细胞死亡,凸显了在开发HD治疗策略中针对线粒体功能的重要性。本综述讨论了线粒体功能障碍在亨廷顿舞蹈症中的作用机制。线粒体功能障碍是HD的一个关键因素,使线粒体靶向治疗成为一种有前景的治疗方法。我们探索了应对生物能量不足的疗法、减少活性氧的抗氧化剂、恢复钙稳态的钙调节剂以及增强线粒体动力学以恢复线粒体功能的治疗方法。我们还强调了基因编辑和干细胞治疗等创新治疗方法,这些方法为更个性化的策略带来了希望。总之,了解亨廷顿舞蹈症中的线粒体功能障碍可能会指导潜在的治疗策略。针对这种功能障碍可能有助于减缓疾病进展并提高受亨廷顿舞蹈症影响个体的生活质量。