Suppr超能文献

一种通过机器学习辅助的脑电图头部手势控制系统操作的低成本经肱骨假肢。

A low-cost transhumeral prosthesis operated via an ML-assisted EEG-head gesture control system.

作者信息

Choi Benjamin J, Liu Ji

机构信息

Harvard University, Cambridge, MA, United States of America.

Stony Brook University, Stony Brook, NY, United States of America.

出版信息

J Neural Eng. 2025 Feb 7;22(1). doi: 10.1088/1741-2552/adae35.

Abstract

Key challenges in upper limb prosthetics include a lack of effective control systems, the often invasive surgical requirements of brain-controlled limbs, and prohibitive costs. As a result, disuse rates remain high despite potential for increased quality of life. To address these concerns, this project developed a low cost, noninvasive transhumeral neuroprosthesis-operated via a combination of electroencephalography (EEG) signals and head gestures.To address the shortcomings of current noninvasive neural monitoring techniques-namely, single-channel EEG-we leveraged machine learning (ML), creating a neural network-based EEG interpretation algorithm. ML generation was guided by two underlying goals: (1) to improve overall system performance by combining discrete models using a prediction voting scheme, and (2) to favor modelwithin these new neural network ensembles, as opposed to individual model. EEG data from eight frequency bands was collected from human subjects to train a ML algorithm employing a hierarchical mixture-of-experts structure. We also implemented head gesture-based control to assist in the generation of additional stable classes for the control system.The final model performs competitively with existing EEG interpretation systems. Inertial measurement unit (IMU)-based head gestures supplement the neural control system, with 270° actuation of synovial elbow and radial wrist joints driven by intuitive corresponding head gestures. The brain-controlled prosthesis presented in this study costs US$300 to manufacture and achieved competitive performance on a Box and Block Test.These results suggest proof-of-concept for potential application as an alternative to current prosthetics, but it is important to note that the demonstration in this study remains exploratory. Future work includes broader clinical testing and exploring further uses for the developed ML system.

摘要

上肢假肢面临的主要挑战包括缺乏有效的控制系统、脑控肢体通常需要侵入性手术以及成本高昂。因此,尽管有可能提高生活质量,但弃用率仍然很高。为了解决这些问题,本项目开发了一种低成本、非侵入性的经肱骨神经假肢,通过脑电图(EEG)信号和头部姿势的组合进行操作。为了解决当前非侵入性神经监测技术(即单通道EEG)的缺点,我们利用机器学习(ML)创建了一种基于神经网络的EEG解释算法。ML生成由两个基本目标指导:(1)通过使用预测投票方案组合离散模型来提高整体系统性能,(2)在这些新的神经网络集成中支持模型,而不是单个模型。从人类受试者收集了来自八个频段的EEG数据,以训练采用分层专家混合结构的ML算法。我们还实施了基于头部姿势的控制,以协助为控制系统生成额外的稳定类别。最终模型与现有的EEG解释系统相比具有竞争力。基于惯性测量单元(IMU)的头部姿势补充了神经控制系统,由直观的相应头部姿势驱动滑膜肘关节和桡腕关节进行270°的驱动。本研究中展示的脑控假肢制造成本为300美元,并在方块堆积测试中取得了有竞争力的性能。这些结果表明了作为当前假肢替代品的潜在应用的概念验证,但需要注意的是,本研究中的演示仍处于探索阶段。未来的工作包括更广泛的临床试验以及探索所开发的ML系统的进一步用途。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验