Suppr超能文献

传染病干预措施所避免和可避免结果分析的因果估计量

Causal Estimands for Analyses of Averted and Avertible Outcomes due to Infectious Disease Interventions.

作者信息

Jia Katherine M, Boyer Christopher B, Wallinga Jacco, Lipsitch Marc

机构信息

From the Center for Communicable Disease Dynamics, Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA.

Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands.

出版信息

Epidemiology. 2025 May 1;36(3):363-373. doi: 10.1097/EDE.0000000000001839. Epub 2025 Jan 24.

Abstract

During the coronavirus disease (COVID-19) pandemic, researchers attempted to estimate the number of averted and avertible outcomes due to vaccination campaigns to quantify public health impact. However, the estimands used in these analyses have not been previously formalized. It is also unclear how these analyses relate to the broader framework of direct, indirect, total, and overall causal effects under interference. Here, using potential outcome notation, we adjust the direct and overall effects to accommodate analyses of averted and avertible outcomes. We use this framework to interrogate the commonly held assumption that vaccine-averted outcomes via direct impact among vaccinated individuals (or vaccine-avertible outcomes via direct impact among unvaccinated individuals) is a lower bound on vaccine-averted (or -avertible) outcomes overall. To do so, we describe a susceptible-infected-recovered-death model stratified by vaccination status. When vaccine efficacies wane, the lower bound fails for vaccine-avertible outcomes. When transmission or fatality parameters increase over time, the lower bound fails for both vaccine-averted and -avertible outcomes. Only in the simplest scenario where vaccine efficacies, transmission, and fatality parameters are constant over time, outcomes averted via direct impact among vaccinated individuals (or outcomes avertible via direct impact among unvaccinated individuals) is a lower bound on overall impact. In conclusion, the lower bound can fail under common violations to assumptions on time-invariant vaccine efficacy, pathogen properties, or behavioral parameters. In real data analyses, estimating what seems like a lower bound on overall impact through estimating direct impact may be inadvisable without examining the directions of indirect effects.

摘要

在冠状病毒病(COVID-19)大流行期间,研究人员试图估算疫苗接种活动避免和可避免的结果数量,以量化其对公共卫生的影响。然而,这些分析中使用的估计量此前尚未正式确定。此外,尚不清楚这些分析与干扰情况下直接、间接、总体和全面因果效应的更广泛框架有何关联。在此,我们使用潜在结果表示法,调整直接效应和总体效应,以适应对避免和可避免结果的分析。我们使用这个框架来审视一个普遍的假设,即通过接种疫苗个体的直接影响避免的疫苗结果(或通过未接种疫苗个体的直接影响可避免的结果)是总体疫苗避免(或可避免)结果的下限。为此,我们描述了一个按疫苗接种状态分层的易感-感染-康复-死亡模型。当疫苗效力减弱时,可避免的疫苗结果下限不成立。当传播或致死参数随时间增加时,避免的疫苗结果和可避免的结果下限均不成立。只有在最简单的情况下,即疫苗效力、传播和致死参数随时间保持不变时,通过接种疫苗个体的直接影响避免的结果(或通过未接种疫苗个体的直接影响可避免的结果)才是总体影响的下限。总之,在疫苗效力、病原体特性或行为参数随时间不变的假设常见违背情况下,下限可能不成立。在实际数据分析中,如果不考察间接效应的方向,通过估计直接影响来估计总体影响的下限可能是不可取的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7452/11957442/566c7140756e/ede-36-363-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验