Suppr超能文献

心源性休克患者院内死亡率的机器学习预测及外部验证:RESCUE评分

Machine learning prediction of in-hospital mortality and external validation in patients with cardiogenic shock: the RESCUE score.

作者信息

Cha Ji Hyun, Choi Ki Hong, Ahn Chul-Min, Yu Cheol Woong, Park Ik Hyun, Jang Woo Jin, Kim Hyun-Joong, Bae Jang-Whan, Kwon Sung Uk, Lee Hyun-Jong, Lee Wang Soo, Jeong Jin-Ok, Park Sang-Don, Park Taek Kyu, Lee Joo Myung, Song Young Bin, Hahn Joo-Yong, Choi Seung-Hyuk, Gwon Hyeon-Cheol, Yang Jeong Hoon

机构信息

Department of Critical Care Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.

Division of Cardiology, Department of Medicine, Heart Vascular Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.

出版信息

Rev Esp Cardiol (Engl Ed). 2025 Jan 22. doi: 10.1016/j.rec.2025.01.003.

Abstract

INTRODUCTION AND OBJECTIVES

Despite advances in mechanical circulatory support, mortality rates in cardiogenic shock (CS) remain high. A reliable risk stratification system could serve as a valuable guide in the clinical management of patients with CS. This study aimed to develop and externally validate a risk prediction model for in-hospital mortality in CS patients using machine learning (ML) algorithms.

METHODS

Data from 1247 patients with all-cause CS in the RESCUE registry (January 2014-December 2018) were analyzed. Key predictive variables were identified using 4 ML algorithms. A risk prediction model, the RESCUE score, was developed using logistic regression based on the selected variables. Internal validation was conducted within the RESCUE registry, and external validation was performed using an independent CS registry of 750 patients.

RESULTS

The 4 ML models identified 7 predictors: age, vasoactive inotropic score, left ventricular ejection fraction, lactic acid level, in-hospital cardiac arrest at presentation, need for continuous renal replacement therapy, and mechanical ventilation. The RESCUE score demonstrated strong predictive performance, with an AUC of 0.86 (95%CI, 0.83-0.88) for in-hospital mortality. Ten-fold internal cross-validation yielded an AUC of 0.86 (95%CI, 0.77-0.95). External validation showed an AUC of 0.80 (95%CI, 0.76-0.84).

CONCLUSIONS

Our ML-based risk-scoring system, the RESCUE score, demonstrated excellent predictive performance for in-hospital mortality in all patients with CS, regardless of cause. The system could be a useful and reliable tool to estimate risk stratification of CS in everyday clinical practice.

CLINICAL TRIAL REGISTRATION

NCT02985008.

摘要

引言与目的

尽管机械循环支持取得了进展,但心源性休克(CS)的死亡率仍然很高。一个可靠的风险分层系统可以作为CS患者临床管理的重要指导。本研究旨在使用机器学习(ML)算法开发并外部验证CS患者院内死亡的风险预测模型。

方法

分析了RESCUE注册研究(2014年1月至2018年12月)中1247例全因性CS患者的数据。使用4种ML算法确定关键预测变量。基于所选变量,采用逻辑回归开发了一种风险预测模型——RESCUE评分。在RESCUE注册研究中进行内部验证,并使用750例患者的独立CS注册研究进行外部验证。

结果

4种ML模型确定了7个预测因素:年龄、血管活性药物评分、左心室射血分数、乳酸水平、入院时院内心脏骤停、需要持续肾脏替代治疗和机械通气。RESCUE评分显示出强大的预测性能,院内死亡的AUC为0.86(95%CI,0.83 - 0.88)。十折内部交叉验证得出的AUC为0.86(95%CI,0.77 - 0.95)。外部验证显示AUC为0.80(95%CI,0.76 - 0.84)。

结论

我们基于ML的风险评分系统RESCUE评分,对所有CS患者(无论病因)的院内死亡均显示出优异的预测性能。该系统可能是日常临床实践中估计CS风险分层的有用且可靠的工具。

临床试验注册

NCT02985008。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验