Suppr超能文献

整合蛋白质结构和网络拓扑的癌症体细胞突变多尺度功能图谱。

A multiscale functional map of somatic mutations in cancer integrating protein structure and network topology.

作者信息

Zhang Yingying, Leung Alden K, Kang Jin Joo, Sun Yu, Wu Guanxi, Li Le, Sun Jiayang, Cheng Lily, Qiu Tian, Zhang Junke, Wierbowski Shayne D, Gupta Shagun, Booth James G, Yu Haiyuan

机构信息

Department of Computational Biology, Cornell University, Ithaca, 14853, NY, USA.

Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, 14853, NY, USA.

出版信息

Nat Commun. 2025 Jan 24;16(1):975. doi: 10.1038/s41467-024-54176-3.

Abstract

A major goal of cancer biology is to understand the mechanisms driven by somatically acquired mutations. Two distinct methodologies-one analyzing mutation clustering within protein sequences and 3D structures, the other leveraging protein-protein interaction network topology-offer complementary strengths. We present NetFlow3D, a unified, end-to-end 3D structurally-informed protein interaction network propagation framework that maps the multiscale mechanistic effects of mutations. Built upon the Human Protein Structurome, which incorporates the 3D structures of every protein and the binding interfaces of all known protein interactions, NetFlow3D integrates atomic, residue, protein and network-level information: It clusters mutations on 3D protein structures to identify driver mutations and propagates their impacts anisotropically across the protein interaction network, guided by the involved interaction interfaces, to reveal systems-level impacts. Applied to 33 cancer types, NetFlow3D identifies 2 times more 3D clusters and incorporates 8 times more proteins in significantly interconnected network modules compared to traditional methods.

摘要

癌症生物学的一个主要目标是了解由体细胞获得性突变驱动的机制。两种不同的方法——一种分析蛋白质序列和三维结构中的突变聚类,另一种利用蛋白质-蛋白质相互作用网络拓扑结构——各有优势,互为补充。我们提出了NetFlow3D,这是一个统一的、端到端的三维结构信息蛋白质相互作用网络传播框架,用于映射突变的多尺度机制效应。NetFlow3D基于人类蛋白质结构组构建,该结构组包含每种蛋白质的三维结构和所有已知蛋白质相互作用的结合界面,整合了原子、残基、蛋白质和网络层面的信息:它在三维蛋白质结构上对突变进行聚类,以识别驱动突变,并在相关相互作用界面的引导下,将其影响各向异性地传播到蛋白质相互作用网络中,以揭示系统层面的影响。与传统方法相比,将NetFlow3D应用于33种癌症类型时,它能识别出多两倍的三维聚类,并在显著相互连接的网络模块中纳入多八倍的蛋白质。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0968/11760531/b913c1e0bc04/41467_2024_54176_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验