Suppr超能文献

复杂性分析在小鼠睡眠-觉醒状态自动分类的脑电图和肌电图中的应用

Utility of complexity analysis in electroencephalography and electromyography for automated classification of sleep-wake states in mice.

作者信息

Furutani Naoki, Saito Yuki C, Niwa Yasutaka, Katsuyama Yu, Nariya Yuta, Kikuchi Mitsuru, Takahashi Tetsuya, Sakurai Takeshi

机构信息

Department of Psychiatry and Neurobiology, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, 920-8640, Japan.

International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, 305- 8575, Japan.

出版信息

Sci Rep. 2025 Jan 24;15(1):3080. doi: 10.1038/s41598-024-74008-0.

Abstract

We explore an innovative approach to sleep stage analysis by incorporating complexity features into sleep scoring methods for mice. Traditional sleep scoring relies on the power spectral features of electroencephalogram (EEG) and the electromyogram (EMG) amplitude. We introduced a novel methodology for sleep stage classification based on two types of complexity analysis, namely multiscale entropy and detrended fluctuation analysis. Our analysis revealed significant variances in these complexities, not only within the specific theta and delta bands but across a wide frequency spectrum. Based on these findings, we developed a sleep stage scoring model, termed Sleep Analyzer Complex (SAC), a convolutional neural network model that integrates these complexity features with conventional EEG spectrum and EMG amplitude analysis. This integrated model significantly enhances the accuracy of sleep stage identification, achieving an accuracy of 97.4-98.1% for novel wild-type mice, on par with the agreement level among human scorers (97.3-97.8%). The efficacy of SAC was validated through tests conducted on wild-type mice, and it demonstrated remarkable success in identifying sleep architecture abnormalities in narcoleptic mice as well. This approach not only facilitates automated scoring of sleep/wakefulness states but also holds the potential to uncover detailed physiological insights, thereby advancing EEG-based sleep research.

摘要

我们探索了一种创新的睡眠阶段分析方法,即将复杂性特征纳入小鼠睡眠评分方法中。传统的睡眠评分依赖于脑电图(EEG)的功率谱特征和肌电图(EMG)振幅。我们引入了一种基于两种复杂性分析的新型睡眠阶段分类方法,即多尺度熵和去趋势波动分析。我们的分析揭示了这些复杂性的显著差异,不仅在特定的θ和δ频段内,而且在很宽的频谱范围内。基于这些发现,我们开发了一种睡眠阶段评分模型,称为睡眠分析仪复合体(SAC),这是一种卷积神经网络模型,它将这些复杂性特征与传统的EEG频谱和EMG振幅分析相结合。这种集成模型显著提高了睡眠阶段识别的准确性,对于新型野生型小鼠,准确率达到97.4-98.1%,与人类评分者之间的一致水平(97.3-97.8%)相当。SAC的有效性通过对野生型小鼠进行的测试得到了验证,并且它在识别发作性睡病小鼠的睡眠结构异常方面也取得了显著成功。这种方法不仅有助于自动评分睡眠/觉醒状态,还具有揭示详细生理见解的潜力,从而推动基于EEG的睡眠研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eef8/11760340/8a77456d5be9/41598_2024_74008_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验