John Mary, Barhumi Imad
Department of Electrical and Communication Engineering, United Arab Emirates University, Asharej, Al Ain, 15551, Abu Dhabi, United Arab Emirates.
Med Biol Eng Comput. 2025 Jun;63(6):1777-1795. doi: 10.1007/s11517-025-03302-4. Epub 2025 Jan 25.
Photoacoustic tomography (PAT) has emerged as a promising imaging modality for breast cancer detection, offering unique advantages in visualizing tissue composition without ionizing radiation. However, limited-view scenarios in clinical settings present significant challenges for image reconstruction quality and computational efficiency. This paper introduces novel unrolled deep learning networks based on split Bregman total variation (SBTV) and relaxed basis pursuit alternating direction method of multipliers (rBP-ADMM) algorithms to address these challenges. Our approach combines transfer learning from full-view to limited-view scenarios with U-Net denoiser integration, achieving state-of-the-art reconstruction quality (MS-SSIM> 0.95) while reducing reconstruction time by 92% compared to traditional methods. The effectiveness of different sensor configurations is analyzed through restricted isometry property (RIP) analysis and coherence values, demonstrating that semicircular arrays achieve a RIP constant of 0.76 and coherence of 0.77, closely approximating full-view performance (RIP: 0.75, coherence: 0.78). These metrics validate the theoretical foundation for accurate sparse signal recovery in limited-view scenarios. Comprehensive evaluations across semicircular, concave, and convex sensor arrangements show that the proposed U-SBTV network consistently outperforms existing methods, particularly when combined with the U-Net denoiser. This advancement in limited-view PAT reconstruction brings the technology closer to practical clinical application, potentially improving early breast cancer detection capabilities.
光声断层扫描(PAT)已成为一种用于乳腺癌检测的有前景的成像方式,在可视化组织成分方面具有独特优势,且无需电离辐射。然而,临床环境中的有限视角场景对图像重建质量和计算效率提出了重大挑战。本文介绍了基于分裂Bregman总变分(SBTV)和松弛基追踪交替方向乘子法(rBP - ADMM)算法的新型展开式深度学习网络,以应对这些挑战。我们的方法将从全视角到有限视角场景的迁移学习与U-Net去噪器集成相结合,实现了一流的重建质量(MS-SSIM> 0.95),同时与传统方法相比,重建时间减少了92%。通过受限等距特性(RIP)分析和相干值分析了不同传感器配置的有效性,结果表明半圆形阵列的RIP常数为0.76,相干性为0.77,与全视角性能(RIP:0.75,相干性:0.78)非常接近。这些指标验证了有限视角场景中准确稀疏信号恢复的理论基础。对半圆形、凹形和凸形传感器布置的综合评估表明,所提出的U-SBTV网络始终优于现有方法,特别是与U-Net去噪器结合时。有限视角PAT重建方面的这一进展使该技术更接近实际临床应用,有可能提高早期乳腺癌检测能力。