Suppr超能文献

通过相关原位显微镜和光谱揭示硝酸盐电还原过程中的催化剂结构重组和组成

Revealing catalyst restructuring and composition during nitrate electroreduction through correlated operando microscopy and spectroscopy.

作者信息

Yoon Aram, Bai Lichen, Yang Fengli, Franco Federico, Zhan Chao, Rüscher Martina, Timoshenko Janis, Pratsch Christoph, Werner Stephan, Jeon Hyo Sang, Monteiro Mariana Cecilio de Oliveira, Chee See Wee, Roldan Cuenya Beatriz

机构信息

Department of Interface Science, Fritz-Haber Institute of the Max-Planck Society, Berlin, Germany.

Shell Global Energy Solution International BV, Amsterdam, Netherlands.

出版信息

Nat Mater. 2025 May;24(5):762-769. doi: 10.1038/s41563-024-02084-8. Epub 2025 Jan 24.

Abstract

Electrocatalysts alter their structure and composition during reaction, which can in turn create new active/selective phases. Identifying these changes is crucial for determining how morphology controls catalytic properties but the mechanisms by which operating conditions shape the catalyst's working state are not yet fully understood. In this study, we show using correlated operando microscopy and spectroscopy that as well-defined CuO cubes evolve under electrochemical nitrate reduction reaction conditions, distinct catalyst motifs are formed depending on the applied potential and the chemical environment. By further matching the timescales of morphological changes observed via electrochemical liquid cell transmission electron microscopy with time-resolved chemical state information obtained from operando transmission soft X-ray microscopy, hard X-ray absorption spectroscopy and Raman spectroscopy, we reveal that CuO can be kinetically stabilized alongside metallic copper for extended durations under moderately reductive conditions due to surface hydroxide formation. Finally, we rationalize how the interaction between the electrolyte and the catalyst influences the ammonia selectivity.

摘要

电催化剂在反应过程中会改变其结构和组成,这反过来又会产生新的活性/选择性相。识别这些变化对于确定形态如何控制催化性能至关重要,但操作条件塑造催化剂工作状态的机制尚未完全了解。在本研究中,我们使用相关的原位显微镜和光谱学表明,在电化学硝酸盐还原反应条件下,随着定义明确的CuO立方体的演变,根据施加的电势和化学环境会形成不同的催化剂图案。通过进一步将通过电化学液体池透射电子显微镜观察到的形态变化的时间尺度与从原位透射软X射线显微镜、硬X射线吸收光谱和拉曼光谱获得的时间分辨化学状态信息相匹配,我们发现由于表面形成氢氧化物,在适度还原条件下,CuO可以与金属铜一起在较长时间内动力学稳定。最后,我们阐述了电解质与催化剂之间的相互作用如何影响氨的选择性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7e14/12048347/8da190188a18/41563_2024_2084_Fig1_HTML.jpg

相似文献

2
Dynamic Evolution of Copper Nanowires during CO Reduction Probed by Electrochemical 4D-STEM and X-ray Spectroscopy.
J Am Chem Soc. 2024 Aug 21;146(33):23398-23405. doi: 10.1021/jacs.4c06480. Epub 2024 Aug 12.
3
Revealing the Intrinsic Restructuring of BiO Nanoparticles into Bi Nanosheets during Electrochemical CO Reduction.
ACS Appl Mater Interfaces. 2024 Mar 6;16(9):11552-11560. doi: 10.1021/acsami.3c18285. Epub 2024 Feb 26.
4
In Situ Loading of CuO Active Sites on Island-like Copper for Efficient Electrochemical Reduction of Nitrate to Ammonia.
ACS Appl Mater Interfaces. 2022 Feb 9;14(5):6680-6688. doi: 10.1021/acsami.1c21691. Epub 2022 Jan 25.
5
Structure- and Electrolyte-Sensitivity in CO Electroreduction.
Acc Chem Res. 2018 Nov 20;51(11):2906-2917. doi: 10.1021/acs.accounts.8b00360. Epub 2018 Oct 18.
6
Resonant Soft X-ray Scattering Studies of Chemical Environment and Interparticle Dynamics of Cu Nanocatalysts for CO Electroreduction.
J Am Chem Soc. 2022 May 25;144(20):8927-8931. doi: 10.1021/jacs.2c03662. Epub 2022 May 16.
7
/ Electrocatalyst Characterization by X-ray Absorption Spectroscopy.
Chem Rev. 2021 Jan 27;121(2):882-961. doi: 10.1021/acs.chemrev.0c00396. Epub 2020 Sep 28.
8
Dynamic Changes in the Structure, Chemical State and Catalytic Selectivity of Cu Nanocubes during CO Electroreduction: Size and Support Effects.
Angew Chem Int Ed Engl. 2018 May 22;57(21):6192-6197. doi: 10.1002/anie.201802083. Epub 2018 Apr 26.
9
Electrocatalytic Nitrate and Nitrite Reduction toward Ammonia Using CuO Nanocubes: Active Species and Reaction Mechanisms.
J Am Chem Soc. 2024 Apr 10;146(14):9665-9678. doi: 10.1021/jacs.3c13288. Epub 2024 Apr 1.
10
Role of Structural and Compositional Changes of CuO Nanocubes in Nitrate Electroreduction to Ammonia.
ACS Appl Energy Mater. 2024 Oct 2;7(19):9034-9044. doi: 10.1021/acsaem.4c02326. eCollection 2024 Oct 14.

引用本文的文献

1
Towards a quantitative theory for transmission X-ray microscopy.
Beilstein J Nanotechnol. 2025 Jul 15;16:1113-1128. doi: 10.3762/bjnano.16.82. eCollection 2025.

本文引用的文献

1
Electrocatalytic Nitrate and Nitrite Reduction toward Ammonia Using CuO Nanocubes: Active Species and Reaction Mechanisms.
J Am Chem Soc. 2024 Apr 10;146(14):9665-9678. doi: 10.1021/jacs.3c13288. Epub 2024 Apr 1.
2
Electron Microscopy of Catalysts: The Missing Cornerstone in Heterogeneous Catalysis Research?
Chem Rev. 2023 Dec 13;123(23):13374-13418. doi: 10.1021/acs.chemrev.3c00352. Epub 2023 Nov 15.
3
Iodide-mediated Cu catalyst restructuring during CO electroreduction.
J Mater Chem A Mater. 2022 May 3;10(26):14041-14050. doi: 10.1039/d1ta11089f. eCollection 2022 Jul 5.
4
Electrolyte Effects on CO Electrochemical Reduction to CO.
Acc Chem Res. 2022 Jul 19;55(14):1900-1911. doi: 10.1021/acs.accounts.2c00080. Epub 2022 Jun 30.
5
Potential-Driven Restructuring of Cu Single Atoms to Nanoparticles for Boosting the Electrochemical Reduction of Nitrate to Ammonia.
J Am Chem Soc. 2022 Jul 13;144(27):12062-12071. doi: 10.1021/jacs.2c02262. Epub 2022 Jun 29.
7
Nitrate electroreduction: mechanism insight, in situ characterization, performance evaluation, and challenges.
Chem Soc Rev. 2021 Jun 21;50(12):6720-6733. doi: 10.1039/d1cs00116g. Epub 2021 May 10.
8
Selectivity Control of Cu Nanocrystals in a Gas-Fed Flow Cell through CO Pulsed Electroreduction.
J Am Chem Soc. 2021 May 19;143(19):7578-7587. doi: 10.1021/jacs.1c03443. Epub 2021 May 6.
9
Growth Dynamics and Processes Governing the Stability of Electrodeposited Size-Controlled Cubic Cu Catalysts.
J Phys Chem C Nanomater Interfaces. 2020 Dec 10;124(49):26908-26915. doi: 10.1021/acs.jpcc.0c09105. Epub 2020 Nov 26.
10
On the Activity/Selectivity and Phase Stability of Thermally Grown Copper Oxides during the Electrocatalytic Reduction of CO.
ACS Catal. 2020 Oct 2;10(19):11510-11518. doi: 10.1021/acscatal.0c03484. Epub 2020 Sep 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验