McNally James G, Pratsch Christoph, Werner Stephan, Rehbein Stefan, Gibbs Andrew, Wang Jihao, Lunkenbein Thomas, Guttmann Peter, Schneider Gerd
Helmholtz-Zentrum Berlin für Materialien und Energie, Elektronenspeicherring BESSY II, Albert-Einstein-Straße 15, 12489 Berlin, Germany.
Department of Mathematics, University College London, London, UK.
Beilstein J Nanotechnol. 2025 Jul 15;16:1113-1128. doi: 10.3762/bjnano.16.82. eCollection 2025.
Transmission X-ray microscopes (TXMs) are now increasingly used for quantitative analysis of samples, most notably in the spectral analysis of materials. Validating such measurements requires quantitatively accurate models for these microscopes, but current TXM models have only been tested qualitatively. Here we develop an experimental and theoretical framework for evaluation of TXMs that uses Mie theory to compute the electric field emerging from a nanosphere. We approximate the microscope's condenser illumination by plane waves at the mean illumination angle and the zone plate by a thin lens. We find that this model produces good qualitative agreement with our 3D measurements of 60 nm gold nanospheres, but only if both β and δ for the complex refractive index = 1 - δ + β of gold are included in the model. This shows that both absorption and phase properties of the specimen influence the acquired TXM image. The qualitative agreement improves if we incorporate a small tilt into the condenser illumination relative to the optical axis, implying a small misalignment in the microscope. Finally, in quantitative comparisons, we show that the model predicts the nanosphere's expected absorption as determined by Beer's law, whereas the microscope underestimates this absorption by 10-20%. This surprising observation highlights the need for future work to identify the microscope feature(s) that lead to this quantitative discrepancy.
透射X射线显微镜(TXM)如今越来越多地用于样品的定量分析,尤其是在材料的光谱分析中。验证此类测量需要针对这些显微镜建立定量准确的模型,但目前的TXM模型仅经过定性测试。在此,我们开发了一个用于评估TXM的实验和理论框架,该框架使用米氏理论来计算从纳米球产生的电场。我们用平均照明角度的平面波近似显微镜的聚光镜照明,并将波带片近似为薄透镜。我们发现,只有当金的复折射率 = 1 - δ + β中的β和δ都包含在模型中时,该模型才能与我们对60纳米金纳米球的三维测量结果产生良好的定性一致性。这表明样品的吸收和相位特性都会影响所获取的TXM图像。如果我们在聚光镜照明相对于光轴的方向上加入一个小的倾斜(这意味着显微镜存在一个小的对准误差),定性一致性会得到改善。最后,在定量比较中,我们表明该模型预测的纳米球预期吸收符合比尔定律,而显微镜对这种吸收的估计低了10% - 20%。这一惊人发现凸显了未来工作中识别导致这种定量差异的显微镜特征的必要性。