Suppr超能文献

用于将延迟钆增强心脏磁共振成像图像分类为心肌梗死、心肌炎和健康类别的深度迁移学习:与主观视觉评估的比较

Deep Transfer Learning for Classification of Late Gadolinium Enhancement Cardiac MRI Images into Myocardial Infarction, Myocarditis, and Healthy Classes: Comparison with Subjective Visual Evaluation.

作者信息

Ben Khalifa Amani, Mili Manel, Maatouk Mezri, Ben Abdallah Asma, Abdellali Mabrouk, Gaied Sofiene, Ben Ali Azza, Lahouel Yassir, Bedoui Mohamed Hedi, Zrig Ahmed

机构信息

Technology and Medical Imaging Laboratory LR12ES06, Faculty of Medicine of Monastir, University of Monastir, Monastir 5019, Tunisia.

Faculty of Sciences of Monastir, University of Monastir, Monastir 5019, Tunisia.

出版信息

Diagnostics (Basel). 2025 Jan 17;15(2):207. doi: 10.3390/diagnostics15020207.

Abstract

To develop a computer-aided diagnosis (CAD) method for the classification of late gadolinium enhancement (LGE) cardiac MRI images into myocardial infarction (MI), myocarditis, and healthy classes using a fine-tuned VGG16 model hybridized with multi-layer perceptron (MLP) (VGG16-MLP) and assess our model's performance in comparison to various pre-trained base models and MRI readers. This study included 361 LGE images for MI, 222 for myocarditis, and 254 for the healthy class. The left ventricle was extracted automatically using a U-net segmentation model on LGE images. Fine-tuned VGG16 was performed for feature extraction. A spatial attention mechanism was implemented as a part of the neural network architecture. The MLP architecture was used for the classification. The evaluation metrics were calculated using a separate test set. To compare the VGG16 model's performance in feature extraction, various pre-trained base models were evaluated: VGG19, DenseNet121, DenseNet201, MobileNet, InceptionV3, and InceptionResNetV2. The Support Vector Machine (SVM) classifier was evaluated and compared to MLP for the classification task. The performance of the VGG16-MLP model was compared with a subjective visual analysis conducted by two blinded independent readers. The VGG16-MLP model allowed high-performance differentiation between MI, myocarditis, and healthy LGE cardiac MRI images. It outperformed the other tested models with 96% accuracy, 97% precision, 96% sensitivity, and 96% F1-score. Our model surpassed the accuracy of Reader 1 by 27% and Reader 2 by 17%. Our study demonstrated that the VGG16-MLP model permits accurate classification of MI, myocarditis, and healthy LGE cardiac MRI images and could be considered a reliable computer-aided diagnosis approach specifically for radiologists with limited experience in cardiovascular imaging.

摘要

开发一种计算机辅助诊断(CAD)方法,使用与多层感知器(MLP)杂交的微调VGG16模型(VGG16-MLP)将延迟钆增强(LGE)心脏磁共振成像(MRI)图像分类为心肌梗死(MI)、心肌炎和健康类别,并与各种预训练的基础模型和MRI阅片者比较评估我们模型的性能。本研究纳入了361张MI的LGE图像、222张心肌炎的LGE图像和254张健康类别的LGE图像。使用U-net分割模型在LGE图像上自动提取左心室。对VGG16进行微调以进行特征提取。作为神经网络架构的一部分实施了空间注意力机制。MLP架构用于分类。使用单独的测试集计算评估指标。为比较VGG16模型在特征提取方面的性能,评估了各种预训练的基础模型:VGG19、DenseNet121、DenseNet201、MobileNet、InceptionV3和InceptionResNetV2。评估了支持向量机(SVM)分类器并将其与MLP用于分类任务进行比较。将VGG16-MLP模型的性能与两名独立的盲法阅片者进行的主观视觉分析进行比较。VGG16-MLP模型能够对MI、心肌炎和健康的LGE心脏MRI图像进行高性能区分。它以96%的准确率、97%的精确率、96%的灵敏度和96%的F1分数优于其他测试模型。我们的模型比阅片者1的准确率高27%,比阅片者2的准确率高17%。我们的研究表明,VGG16-MLP模型能够准确分类MI、心肌炎和健康的LGE心脏MRI图像,并且可以被认为是一种可靠的计算机辅助诊断方法,特别是对于心血管成像经验有限的放射科医生。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8a11/11765457/a4cc707a731e/diagnostics-15-00207-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验