Kim Sangyeob, Seok Ogyun
Department of Semiconductor System Engineering, Kumoh National Institute of Technology, Gumi 39177, Republic of Korea.
School of Electrical and Electronic Engineering, Pusan National University, Busan 46241, Republic of Korea.
Micromachines (Basel). 2024 Dec 30;16(1):47. doi: 10.3390/mi16010047.
We demonstrated 3.3 kV silicon carbide (SiC) PiN diodes using a trenched ring-assisted junction termination extension (TRA-JTE) with PN multi-epitaxial layers. Multiple P rings and width-modulated multiple trenches were utilized to alleviate electric-field crowding at the edges of the junction to quantitively control the effective charge (Q) in the termination structures. The TRA-JTE forms with the identical P-type epitaxial layer, which enables high-efficiency hole injection and conductivity modulation. The effects of major design parameters for the TRA-JTE, such as the number of trenches (N) and depth of trenches (D), were analyzed to obtain reliable blocking capabilities. Furthermore, the single-zone-JTE (SZ-JTE), ring-assisted-JTE (RA-JTE), and trenched-JTE (T-JTE) were also evaluated for comparative analysis. Our results show that the TRA-JTE exhibited the highest breakdown voltage (BV), exceeding 4.2 kV, and the strongest tolerance against variance in doping concentration for the JTE (N) compared to both the RA-JTE and T-JTE due to the charge-balanced edge termination by multiple P rings and trench structures.
我们展示了采用具有PN多外延层的沟槽环形辅助结终端扩展(TRA-JTE)的3.3 kV碳化硅(SiC)PiN二极管。利用多个P环和宽度调制的多个沟槽来减轻结边缘处的电场拥挤,从而定量控制终端结构中的有效电荷(Q)。TRA-JTE由相同的P型外延层形成,这使得能够进行高效的空穴注入和电导率调制。分析了TRA-JTE的主要设计参数(如沟槽数量(N)和沟槽深度(D))的影响,以获得可靠的阻断能力。此外,还对单区JTE(SZ-JTE)、环形辅助JTE(RA-JTE)和沟槽JTE(T-JTE)进行了评估,以进行对比分析。我们的结果表明,TRA-JTE表现出最高的击穿电压(BV),超过4.2 kV,并且与RA-JTE和T-JTE相比,由于多个P环和沟槽结构实现了电荷平衡边缘终端,其对JTE(N)掺杂浓度变化的耐受性最强。