Liu Yonghao, Zhao Dawei, Cong Lujia, Han Yanfeng, Fu Mingdi, Wu Xiaoxin, Zhang Junkai
Heilongjiang Provincial Key Laboratory of Oilfield Applied Chemistry and Technology, School of Mechatronics Engineering, Daqing Normal University, Daqing 163712, China.
Key Laboratory of Functional Materials Physics and Chemistry, Ministry of Education, College of Physics, Jilin Normal University, Changchun 130103, China.
Molecules. 2025 Jan 13;30(2):297. doi: 10.3390/molecules30020297.
The main component of high-capacity silicon-based electrodes is silicon powder, which necessitates intricate processing to minimize volume growth and powder separation while guaranteeing the ideal Si content. This work uses the an situ high-pressure forming approach to create an MXene/-Si/MXene composite electrode, where MXene refers to TiCT, and -Si denotes two-phase mixed nano-Si particles. The sandwich shape promotes silicon's volume growth and stops active particles from spreading. The conductive structure of TiCT MXene increases the efficiency of charge transfer while reducing internal resistance. After 100 cycles, the composite electrode's original capacity of 1310.9 mAh g at a current density of 0.5 A g is maintained at 781.0 mAh g. These findings lay the foundation for further investigations into Si matrix composite electrodes.
高容量硅基电极的主要成分是硅粉,这需要复杂的加工工艺,以在保证理想硅含量的同时,尽量减少体积增长和粉末分离。这项工作采用原位高压成型方法制备了一种MXene/-Si/MXene复合电极,其中MXene指TiCT,-Si表示两相混合纳米硅颗粒。这种三明治形状促进了硅的体积增长,并阻止活性颗粒扩散。TiCT MXene的导电结构提高了电荷转移效率,同时降低了内阻。在100次循环后,复合电极在0.5 A g的电流密度下,其初始容量1310.9 mAh g保持在781.0 mAh g。这些发现为进一步研究硅基复合电极奠定了基础。