文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Natural Product Identification and Molecular Docking Studies of Leishmania Major Pteridine Reductase Inhibitors.

作者信息

Arthur Moses N, Hanson George, Broni Emmanuel, Sakyi Patrick O, Mensah-Brown Henrietta, Miller Whelton A, Kwofie Samuel K

机构信息

Department of Parasitology, Noguchi Memorial Institute for Medical Research (NMIMR), College of Health Sciences (CHS), University of Ghana, Legon, Accra P.O. Box LG 581, Ghana.

Department of Biomedical Engineering, University of Rochester, Rochester, NY 14627, USA.

出版信息

Pharmaceuticals (Basel). 2024 Dec 24;18(1):6. doi: 10.3390/ph18010006.


DOI:10.3390/ph18010006
PMID:39861069
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11768234/
Abstract

: Pteridine reductase 1 (PTR1) has been one of the prime targets for discovering novel antileishmanial therapeutics in the fight against Leishmaniasis. This enzyme catalyzes the NADPH-dependent reduction of pterins to their tetrahydro forms. While chemotherapy remains the primary treatment, its effectiveness is constrained by drug resistance, unfavorable side effects, and substantial associated costs. : This study addresses the urgent need for novel, cost-effective drugs by employing in silico techniques to identify potential lead compounds targeting the PTR1 enzyme. A library of 1463 natural compounds from AfroDb and NANPDB, prefiltered based on Lipinski's rules, was used to screen against the LmPTR1 target. The X-ray structure of LmPTR1 complexed with NADP and dihydrobiopterin (Protein Data Bank ID: 1E92) was identified to contain the critical residues Arg17, Leu18, Ser111, Phe113, Pro224, Gly225, Ser227, Leu229, and Val230 including the triad of residues Asp181-Tyr194-Lys198, which are critical for the catalytic process involving the reduction of dihydrofolate to tetrahydrofolate. : The docking yielded 155 compounds meeting the stringent criteria of -8.9 kcal/mol instead of the widely used -7.0 kcal/mol. These compounds demonstrated binding affinities comparable to the known inhibitors; methotrexate (-9.5 kcal/mol), jatrorrhizine (-9.0 kcal/mol), pyrimethamine (-7.3 kcal/mol), hardwickiic acid (-8.1 kcal/mol), and columbamine (-8.6 kcal/mol). Protein-ligand interactions and molecular dynamics (MD) simulation revealed favorable hydrophobic and hydrogen bonding with critical residues, such as Lys198, Arg17, Ser111, Tyr194, Asp181, and Gly225. Crucial to the drug development, the compounds were physiochemically and pharmacologically profiled, narrowing the selection to eight compounds, excluding those with potential toxicities. The five selected compounds ZINC000095486253, ZINC000095486221, ZINC000095486249, 8alpha-hydroxy-13-epi-pimar-16-en-6,18-olide, and pachycladin D were predicted to be antiprotozoal () with Pa values of 0.642, 0.297, 0.543, 0.431, and 0.350, respectively. : This study identified five lead compounds that showed substantial binding affinity against LmPTR1 as well as critical residue interactions. A 100 ns MD combined with molecular mechanics Poisson-Boltzmann surface area (MM/PBSA) calculations confirmed the robust binding interactions and provided insights into the dynamics and stability of the protein-ligand complexes.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b7a/11768234/238a1262b491/pharmaceuticals-18-00006-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b7a/11768234/311c004c29c2/pharmaceuticals-18-00006-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b7a/11768234/84f578ef947d/pharmaceuticals-18-00006-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b7a/11768234/00e5428708a5/pharmaceuticals-18-00006-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b7a/11768234/790cc478eded/pharmaceuticals-18-00006-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b7a/11768234/5921779f0925/pharmaceuticals-18-00006-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b7a/11768234/6bf00f198de9/pharmaceuticals-18-00006-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b7a/11768234/4c10fbe2f483/pharmaceuticals-18-00006-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b7a/11768234/d257132688da/pharmaceuticals-18-00006-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b7a/11768234/238a1262b491/pharmaceuticals-18-00006-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b7a/11768234/311c004c29c2/pharmaceuticals-18-00006-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b7a/11768234/84f578ef947d/pharmaceuticals-18-00006-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b7a/11768234/00e5428708a5/pharmaceuticals-18-00006-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b7a/11768234/790cc478eded/pharmaceuticals-18-00006-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b7a/11768234/5921779f0925/pharmaceuticals-18-00006-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b7a/11768234/6bf00f198de9/pharmaceuticals-18-00006-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b7a/11768234/4c10fbe2f483/pharmaceuticals-18-00006-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b7a/11768234/d257132688da/pharmaceuticals-18-00006-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b7a/11768234/238a1262b491/pharmaceuticals-18-00006-g009.jpg

相似文献

[1]
Natural Product Identification and Molecular Docking Studies of Leishmania Major Pteridine Reductase Inhibitors.

Pharmaceuticals (Basel). 2024-12-24

[2]
Computational studies on potential small molecule inhibitors of pteridine reductase 1.

J Biomol Struct Dyn. 2023

[3]
Thiadiazine-thiones as inhibitors of leishmania pteridine reductase (PTR1) target: investigations and in silico approach.

J Biomol Struct Dyn. 2024-10

[4]
Antileishmanial natural products as potential inhibitors of the pteridine reductase: insights from molecular docking and molecular dynamics simulations.

In Silico Pharmacol. 2024-7-30

[5]
Could chroman-4-one derivative be a better inhibitor of PTR1? - Reason for the identified disparity in its inhibitory potency in Trypanosoma brucei and Leishmania major.

Comput Biol Chem. 2021-2

[6]
Leishmanicidal Potential of Hardwickiic Acid Isolated From .

Front Pharmacol. 2020-5-25

[7]
Crystal structure of the ternary complex of Leishmania major pteridine reductase 1 with the cofactor NADP/NADPH and the substrate folic acid.

Acta Crystallogr F Struct Biol Commun. 2022-4-1

[8]
In Silico Identification and In Vitro Evaluation of Natural Inhibitors of Leishmania major Pteridine Reductase I.

Molecules. 2017-12-6

[9]
A Molecular Modeling Approach to Identify Potential Antileishmanial Compounds Against the Cell Division Cycle (cdc)-2-Related Kinase 12 (CRK12) Receptor of .

Biomolecules. 2021-3-18

[10]
Identification of novel 3-dehydroquinate dehydratase (DHQD) inhibitors for anti-tuberculosis activity: insights from virtual screening, molecular docking, and dynamics simulations.

In Silico Pharmacol. 2025-1-7

引用本文的文献

[1]
Drug Repurposing for Kala-Azar.

Pharmaceutics. 2025-8-6

[2]
Targeting using natural African compounds as promising agents for managing diabetic complications.

Front Bioinform. 2025-2-6

本文引用的文献

[1]
Synergistic Effects of Artesunate in Combination with Amphotericin B and Miltefosine against : Potential for Dose Reduction and Enhanced Therapeutic Strategies.

Antibiotics (Basel). 2024-8-26

[2]
Development of nucleic acid lateral flow immunoassay for duplex detection of Leishmania martiniquensis and Leishmania orientalis in asymptomatic patients with HIV.

PLoS One. 2024

[3]
Demographic characteristics and clinical features of patients presenting with different forms of cutaneous leishmaniasis, in Lay Gayint, Northern Ethiopia.

PLoS Negl Trop Dis. 2024-8

[4]
Global Dilemma and Needs Assessment Toward Achieving Sustainable Development Goals in Controlling Leishmaniasis.

J Epidemiol Glob Health. 2024-3

[5]
Synthesis, antileishmanial, antimalarial evaluation and molecular docking study of some hydrazine-coupled pyrazole derivatives.

BMC Chem. 2024-1-8

[6]
Targeting apoptosis; design, synthesis and biological evaluation of new benzoxazole and thiazole based derivatives.

BMC Chem. 2024-1-3

[7]
In Silico and In Vitro Search for Dual Inhibitors of the and Pteridine Reductase 1 and Dihydrofolate Reductase.

Molecules. 2023-11-10

[8]
Structure and dynamics of pteridine reductase 1: the key phenomena relevant to enzyme function and drug design.

Eur Biophys J. 2023-10

[9]
Leishmaniasis: Recent epidemiological studies in the Middle East.

Front Microbiol. 2023-2-2

[10]
Anti-trypanosomatid drug discovery: progress and challenges.

Nat Rev Microbiol. 2023-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索