Suppr超能文献

在湿法制粒商业规模制药生产中使用机器学习工具评估片剂压片和破碎力预测模型

Evaluation of Prediction Models for the Capping and Breaking Force of Tablets Using Machine Learning Tools in Wet Granulation Commercial-Scale Pharmaceutical Manufacturing.

作者信息

Kim Sun Ho, Han Su Hyeon, Seo Dong-Wan, Kang Myung Joo

机构信息

College of Pharmacy, Dankook University, 119, Dandae-ro, Dongnam-gu, Cheonan-si 31116, Republic of Korea.

Department of Mechanical Engineering, Kongju National University, 1223-24, Cheonan-daero, Seobuk-gu, Cheonan-si 31080, Republic of Korea.

出版信息

Pharmaceuticals (Basel). 2024 Dec 27;18(1):23. doi: 10.3390/ph18010023.

Abstract

: This study aimed to establish a predictive model for critical quality attributes (CQAs) related to tablet integrity, including tablet breaking force (TBF), friability, and capping occurrence, using machine learning-based models and nondestructive experimental data. : The machine learning-based models were trained on data to predict the CQAs of metformin HCl (MF)-containing tablets using a commercial-scale wet granulation process, and five models were each compared for regression and classification. We identified eight input variables associated with the process and material parameters that control the tableting outcome using feature importance analysis. : Among the models, the Gaussian Process regression model provided the most successful results, with values of 0.959 and 0.949 for TBF and friability, respectively. Capping occurrence was accurately predicted by all models, with the Boosted Trees model achieving a 97.80% accuracy. Feature importance analysis revealed that the compression force and magnesium stearate fraction were the most influential parameters in CQA prediction and are input variables that could be used in CQA prediction. : These findings indicate that TBF, friability, and capping occurrence were successfully modeled using machine learning with a large dataset by constructing regression and classification models. Applying these models before tablet manufacturing can enhance product quality during wet granulation scale-up, particularly by preventing capping during the manufacturing process without damaging the tablets.

摘要

本研究旨在利用基于机器学习的模型和无损实验数据,建立与片剂完整性相关的关键质量属性(CQA)的预测模型,包括片剂断裂力(TBF)、脆碎度和裂片发生率。基于机器学习的模型使用商业规模的湿法制粒工艺,对含盐酸二甲双胍(MF)片剂的CQA数据进行训练,并对五个模型分别进行回归和分类比较。我们通过特征重要性分析确定了八个与控制压片结果的工艺和物料参数相关的输入变量。在这些模型中,高斯过程回归模型取得了最成功的结果,TBF和脆碎度的 值分别为0.959和0.949。所有模型都能准确预测裂片发生率,其中提升树模型的准确率达到97.80%。特征重要性分析表明,压缩力和硬脂酸镁比例是CQA预测中最具影响力的参数,也是可用于CQA预测的输入变量。这些发现表明,通过构建回归和分类模型,利用大型数据集通过机器学习成功地对TBF、脆碎度和裂片发生率进行了建模。在片剂制造前应用这些模型可以在湿法制粒放大过程中提高产品质量,特别是通过防止制造过程中的裂片而不损坏片剂。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b86f/11768509/2ac715cc2e36/pharmaceuticals-18-00023-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验