Suppr超能文献

从母亲到孩子的垂直代谢组转移:一种用于检测代谢组遗传力的可解释机器学习方法。

Vertical Metabolome Transfer from Mother to Child: An Explainable Machine Learning Method for Detecting Metabolomic Heritability.

作者信息

Lovrić Mario, Horner David, Chen Liang, Brustad Nicklas, Malby Schoos Ann-Marie, Lasky-Su Jessica, Chawes Bo, Rasmussen Morten Arendt

机构信息

Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, 2820 Gentofte, Denmark.

The Lisbon Council, Rue de la Loi 155, 1040 Brussels, Belgium.

出版信息

Metabolites. 2024 Feb 24;14(3):136. doi: 10.3390/metabo14030136.

Abstract

Vertical transmission of metabolic constituents from mother to child contributes to the manifestation of disease phenotypes in early life. This study probes the vertical transmission of metabolites from mothers to offspring by utilizing machine learning techniques to differentiate between true mother-child dyads and randomly paired non-dyads. Employing random forests (RF), light gradient boosting machine (LGBM), and logistic regression (Elasticnet) models, we analyzed metabolite concentration discrepancies in mother-child pairs, with maternal plasma sampled at 24 weeks of gestation and children's plasma at 6 months. The propensity of vertical transfer was quantified, reflecting the likelihood of accurate mother-child matching. Our findings were substantiated against an external test set and further verified through statistical tests, while the models were explained using permutation importance and SHapley Additive exPlanations (SHAP). The best model was achieved using RF, while xenobiotics were shown to be highly relevant in transfer. The study reaffirms the transmission of certain metabolites, such as perfluorooctanoic acid (PFOA), but also reveals additional insights into the maternal influence on the child's metabolome. We also discuss the multifaceted nature of vertical transfer. These machine learning-driven insights complement conventional epidemiological findings and offer a novel perspective on using machine learning as a methodology for understanding metabolic interactions.

摘要

代谢成分从母亲到孩子的垂直传播有助于疾病表型在生命早期的显现。本研究通过利用机器学习技术区分真正的母婴二元组和随机配对的非二元组,来探究代谢物从母亲到后代的垂直传播。我们使用随机森林(RF)、轻梯度提升机(LGBM)和逻辑回归(弹性网络)模型,分析了母婴对中代谢物浓度差异,其中母亲血浆在妊娠24周时采集,孩子血浆在6个月时采集。对垂直转移的倾向进行了量化,反映了准确母婴匹配的可能性。我们的发现通过外部测试集得到证实,并通过统计检验进一步验证,同时使用排列重要性和SHapley加法解释(SHAP)对模型进行了解释。使用RF获得了最佳模型,而异生素在转移中显示出高度相关性。该研究再次证实了某些代谢物的传播,如全氟辛酸(PFOA),但也揭示了母亲对孩子代谢组影响的更多见解。我们还讨论了垂直转移的多方面性质。这些由机器学习驱动的见解补充了传统流行病学的发现,并为将机器学习作为理解代谢相互作用的方法提供了新的视角。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/60e8/10972480/c483a76e7df6/metabolites-14-00136-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验